Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "32f93617-c1eb-4097-ac44-9d43200a4637"}, "_deposit": {"id": "4734", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4734"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4734", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Effective Features Selection for Detecting Fake Accounts on Twitter", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Social networking sites have turned out to be extremely well known as of late. Most internet users utilize them to discover new companions, refreshes their current companions with their most recent feelings and thoughts. Among these sites, Twitter, the quickest developing networking site, additionally pulls in numerous fake users to penetrate genuine users’ accounts with a lot of fake news, malware, viruses, and so on. This paper identifies effective features to distinguish fake accounts from legitimate accounts. Firstly, 20 features from users’ tweet content and user’s profile, which check possibly, are extracted to distinguish fake accounts. Effective features are selected from these 20 features using two feature selection methods. Validations of the effective features are proofed on Decision Tree method. The experimental results of five machine learning classifiers are shown in this paper and Random Forest classifier achieves the best detection accuracy with 95.7%."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value": []}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Sixteenth International Conferences on Computer Applications(ICCA 2018)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Swe, Myo Myo"}, {"subitem_authors_fullname": "Myo, Nyein Nyein"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-02-22"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/450"}, "item_title": "Effective Features Selection for Detecting Fake Accounts on Twitter", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004734", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-04"}, "publish_date": "2019-07-04", "publish_status": "0", "recid": "4734", "relation": {}, "relation_version_is_last": true, "title": ["Effective Features Selection for Detecting Fake Accounts on Twitter"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Effective Features Selection for Detecting Fake Accounts on Twitter

http://hdl.handle.net/20.500.12678/0000004734
http://hdl.handle.net/20.500.12678/0000004734
9a97ae33-098c-4661-a60f-70d81e2637a5
32f93617-c1eb-4097-ac44-9d43200a4637
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:18:05.043502
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL