Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "63930aa2-ccb2-4687-877f-7c8141e7f297"}, "_deposit": {"id": "4719", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4719"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4719", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Vehicle Trajectory Analysis by Clustering", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "With widespread availability of low cost GPSdevices, it is becoming possible to record data about themoving objects on a large scale. The analysis of movingobjects trajectory data is a critical component in a widerange of research and decision-making fields. Toanalyze the object movement regularities and anomalies,trajectory clustering plays an important role intrajectory mining. Trajectory clustering provides newand helpful information such as Jam detection andsignificant location recognition. In this paper, we focuson vehicle movement trajectory data and analyze todiscover the various significant locations. We propose aK-means based clustering algorithm to mine thetrajectory data for extracting the important information.The truck trajectory dataset of Athens is used in theproposed approach as an illustrative example. The resultof clustering is visualized with the help of Google Maps."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "K-means clustering"}, {"interim": "move mining"}, {"interim": "trajectory clustering"}, {"interim": "vehicle movement data analysis"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value": []}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Tenth International Conference On Computer Applications (ICCA 2012)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Khaing, Hnin Su"}, {"subitem_authors_fullname": "Thein, Thandar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2012-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/425"}, "item_title": "Vehicle Trajectory Analysis by Clustering", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004719", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-04"}, "publish_date": "2019-07-04", "publish_status": "0", "recid": "4719", "relation": {}, "relation_version_is_last": true, "title": ["Vehicle Trajectory Analysis by Clustering"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Vehicle Trajectory Analysis by Clustering

http://hdl.handle.net/20.500.12678/0000004719
http://hdl.handle.net/20.500.12678/0000004719
f2539a89-95c5-4c6e-a788-10880a265d50
63930aa2-ccb2-4687-877f-7c8141e7f297
Publication type
Article
Upload type
Publication
Title
Title Vehicle Trajectory Analysis by Clustering
Language en
Publication date 2012-02-28
Authors
Khaing, Hnin Su
Thein, Thandar
Description
With widespread availability of low cost GPSdevices, it is becoming possible to record data about themoving objects on a large scale. The analysis of movingobjects trajectory data is a critical component in a widerange of research and decision-making fields. Toanalyze the object movement regularities and anomalies,trajectory clustering plays an important role intrajectory mining. Trajectory clustering provides newand helpful information such as Jam detection andsignificant location recognition. In this paper, we focuson vehicle movement trajectory data and analyze todiscover the various significant locations. We propose aK-means based clustering algorithm to mine thetrajectory data for extracting the important information.The truck trajectory dataset of Athens is used in theproposed approach as an illustrative example. The resultof clustering is visualized with the help of Google Maps.
Keywords
K-means clustering, move mining, trajectory clustering, vehicle movement data analysis
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/425
Journal articles
Tenth International Conference On Computer Applications (ICCA 2012)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:17:19.568075
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL