Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "ff05a17b-a913-4e28-b42d-00b97b201765"}, "_deposit": {"id": "4717", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4717"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4717", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "CPU Usage Prediction Models for Virtualized Data Center", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Resource allocation plays an important role inVirtualized Data Center (VDC). The applicationsrunning in VDC are mostly business criticalapplications with Quality-of-Service (QoS)requirements. Moreover, dynamic resource allocationand real time monitoring of the resource usage of VMsare also needed to reduce under resource utilization andover resource utilization. Therefore, resource usageprediction is required for dynamic resource allocationsystems. In efficient dynamic resource allocation, theresources are allocated to a VM while meeting theirService Level Agreement (SLA). The main contributionof this work is two-fold. The first is the generation ofCPU usage prediction models by applying differentpowerful machine learning techniques. The second isSLA evaluation on predicted value by using proposedSLA metric. To evaluate the efficiency of these models,experiments are carried out by using CPU profiles fromreal world data centre. According to the experiments,proposed resource prediction models have promisingaccuracy."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "CPU usage prediction"}, {"interim": "machine learning techniques"}, {"interim": "SLA"}, {"interim": "Quality-of-Service (QoS)"}, {"interim": "Virtualized Data Center"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value": []}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Tenth International Conference On Computer Applications (ICCA 2012)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Phyo, Zar Lwin"}, {"subitem_authors_fullname": "Thein, Thandar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2012-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/422"}, "item_title": "CPU Usage Prediction Models for Virtualized Data Center", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004717", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-04"}, "publish_date": "2019-07-04", "publish_status": "0", "recid": "4717", "relation": {}, "relation_version_is_last": true, "title": ["CPU Usage Prediction Models for Virtualized Data Center"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

CPU Usage Prediction Models for Virtualized Data Center

http://hdl.handle.net/20.500.12678/0000004717
http://hdl.handle.net/20.500.12678/0000004717
3b65af3d-98a7-46a2-95a6-d5449615ea65
ff05a17b-a913-4e28-b42d-00b97b201765
Publication type
Article
Upload type
Publication
Title
Title CPU Usage Prediction Models for Virtualized Data Center
Language en
Publication date 2012-02-28
Authors
Phyo, Zar Lwin
Thein, Thandar
Description
Resource allocation plays an important role inVirtualized Data Center (VDC). The applicationsrunning in VDC are mostly business criticalapplications with Quality-of-Service (QoS)requirements. Moreover, dynamic resource allocationand real time monitoring of the resource usage of VMsare also needed to reduce under resource utilization andover resource utilization. Therefore, resource usageprediction is required for dynamic resource allocationsystems. In efficient dynamic resource allocation, theresources are allocated to a VM while meeting theirService Level Agreement (SLA). The main contributionof this work is two-fold. The first is the generation ofCPU usage prediction models by applying differentpowerful machine learning techniques. The second isSLA evaluation on predicted value by using proposedSLA metric. To evaluate the efficiency of these models,experiments are carried out by using CPU profiles fromreal world data centre. According to the experiments,proposed resource prediction models have promisingaccuracy.
Keywords
CPU usage prediction, machine learning techniques, SLA, Quality-of-Service (QoS), Virtualized Data Center
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/422
Journal articles
Tenth International Conference On Computer Applications (ICCA 2012)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:17:16.117800
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL