Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "7d3031ad-c73f-42ee-9853-e3200a44fe48"}, "_deposit": {"id": "4691", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4691"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4691", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Using Genetic Algorithm for Word Alignment Model", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Word alignment is a key task for every innovative statistical machine translation (SMT) system. An alignment is the arrangement of two or more alignments between the parallel sentences. The problem of word alignment in SMT is to find the strong alignment in the corresponding sentence pairs. Moreover, the popular word alignment models need bilingual corpora to align the words in the parallel corpus. But for the Myanmar Language which is inflected and it is also a language scarce resource. For this reason, we developed a manually sentence aligned bilingual corpus which has three thousand sentence pairs and created a gold standard (GS) corpus to measure the alignment error rate of the system. This paper explores a new unsupervised word alignment model for these tasks based on the genetic algorithm (GA). Experimental results are show that our model reduces the alignment error rate by 7.55% AER on the baseline."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value": []}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Sixteenth International Conferences on Computer Applications(ICCA 2018)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Han, Nway Nway"}, {"subitem_authors_fullname": "Thida, Aye"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-02-22"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/363"}, "item_title": "Using Genetic Algorithm for Word Alignment Model", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004691", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-04"}, "publish_date": "2019-07-04", "publish_status": "0", "recid": "4691", "relation": {}, "relation_version_is_last": true, "title": ["Using Genetic Algorithm for Word Alignment Model"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Using Genetic Algorithm for Word Alignment Model

http://hdl.handle.net/20.500.12678/0000004691
http://hdl.handle.net/20.500.12678/0000004691
548a7a37-c176-4809-b6e0-c550de19c904
7d3031ad-c73f-42ee-9853-e3200a44fe48
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:16:30.862425
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL