Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "2b4a27c7-4339-48af-ab85-54c98ce5028e"}, "_deposit": {"id": "4682", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4682"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4682", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Web Documents Clustering Using PSO Algorithm and Ontology", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "The largest sharedinformation source, theWorld Wide Web hasbeen increasing atremendous proliferationin the amount ofinformation rapidly. As aresult of its huge sharingand highly dynamicdata, there is a need forgrouping the documentsinto clusters for fasterinformation retrieval.Clustering webdocuments is collectionof documents into groupssuch that the documentswithin each group aresimilar to each other.Document clustering isone of the mainchallenging tasks in webdata mining and it is stillrequires an efficientclustering techniques.The typical way ofrepresenting a webdocument is a huge boxof terms. Therepresentation of theseterms is oftenunsatisfactory as it doesnot exploit thesemantics. This paperproposes Particle swarmOptimization (PSO) andOntology for clusteringof text documents. Adomain Ontology isdeveloped thus itenriched with semanticand synonyms for therepresentation of terms.Particle SwarmOptimization (PSO)algorithm is used tocluster high voluminousof data efficiently. Thispaper presentscomparative results ofusing PSO algorithmonly and PSO algorithmusing Ontology forclustering webdocuments. The analysisresult of test data isefficient enough inrepresentation of terms by using Ontology andthe performance of PSOclustering algorithm ishigh in intra cluster andinters cluster similarity."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "document clustering"}, {"interim": "representation of terms"}, {"interim": "PSO"}, {"interim": "Ontology"}, {"interim": "inter cluster"}, {"interim": "intra cluster"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "201655.pdf", "filesize": [{"value": "236 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 236000.0, "url": {"url": "https://meral.edu.mm/record/4682/files/201655.pdf"}, "version_id": "a02f0d7f-01c0-4dfb-9cb6-85d1bd13b368"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourteenth International Conference On Computer Applications (ICCA 2016)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Lwin, Wai Wai"}, {"subitem_authors_fullname": "Kham, Nang Saing Moon"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2016-02-25"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/345"}, "item_title": "Web Documents Clustering Using PSO Algorithm and Ontology", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004682", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "4682", "relation": {}, "relation_version_is_last": true, "title": ["Web Documents Clustering Using PSO Algorithm and Ontology"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Web Documents Clustering Using PSO Algorithm and Ontology

http://hdl.handle.net/20.500.12678/0000004682
http://hdl.handle.net/20.500.12678/0000004682
0b659707-0fa5-483a-aff7-fa059b952306
2b4a27c7-4339-48af-ab85-54c98ce5028e
None
Preview
Name / File License Actions
201655.pdf 201655.pdf (236 Kb)
Publication type
Article
Upload type
Publication
Title
Title Web Documents Clustering Using PSO Algorithm and Ontology
Language en
Publication date 2016-02-25
Authors
Lwin, Wai Wai
Kham, Nang Saing Moon
Description
The largest sharedinformation source, theWorld Wide Web hasbeen increasing atremendous proliferationin the amount ofinformation rapidly. As aresult of its huge sharingand highly dynamicdata, there is a need forgrouping the documentsinto clusters for fasterinformation retrieval.Clustering webdocuments is collectionof documents into groupssuch that the documentswithin each group aresimilar to each other.Document clustering isone of the mainchallenging tasks in webdata mining and it is stillrequires an efficientclustering techniques.The typical way ofrepresenting a webdocument is a huge boxof terms. Therepresentation of theseterms is oftenunsatisfactory as it doesnot exploit thesemantics. This paperproposes Particle swarmOptimization (PSO) andOntology for clusteringof text documents. Adomain Ontology isdeveloped thus itenriched with semanticand synonyms for therepresentation of terms.Particle SwarmOptimization (PSO)algorithm is used tocluster high voluminousof data efficiently. Thispaper presentscomparative results ofusing PSO algorithmonly and PSO algorithmusing Ontology forclustering webdocuments. The analysisresult of test data isefficient enough inrepresentation of terms by using Ontology andthe performance of PSOclustering algorithm ishigh in intra cluster andinters cluster similarity.
Keywords
document clustering, representation of terms, PSO, Ontology, inter cluster, intra cluster
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/345
Journal articles
Fourteenth International Conference On Computer Applications (ICCA 2016)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:16:08.958126
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL