-
RootNode
-
Co-operative College, Mandalay
-
Cooperative College, Phaunggyi
-
Co-operative University, Sagaing
-
Co-operative University, Thanlyin
-
Dagon University
-
Kyaukse University
-
Laquarware Technological college
-
Mandalay Technological University
-
Mandalay University of Distance Education
-
Mandalay University of Foreign Languages
-
Maubin University
-
Mawlamyine University
-
Meiktila University
-
Mohnyin University
-
Myanmar Institute of Information Technology
-
Myanmar Maritime University
-
National Management Degree College
-
Naypyitaw State Academy
-
Pathein University
-
Sagaing University
-
Sagaing University of Education
-
Taunggyi University
-
Technological University, Hmawbi
-
Technological University (Kyaukse)
-
Technological University Mandalay
-
University of Computer Studies, Mandalay
-
University of Computer Studies Maubin
-
University of Computer Studies, Meikhtila
-
University of Computer Studies Pathein
-
University of Computer Studies, Taungoo
-
University of Computer Studies, Yangon
-
University of Dental Medicine Mandalay
-
University of Dental Medicine, Yangon
-
University of Information Technology
-
University of Mandalay
-
University of Medicine 1
-
University of Medicine 2
-
University of Medicine Mandalay
-
University of Myitkyina
-
University of Public Health, Yangon
-
University of Veterinary Science
-
University of Yangon
-
West Yangon University
-
Yadanabon University
-
Yangon Technological University
-
Yangon University of Distance Education
-
Yangon University of Economics
-
Yangon University of Education
-
Yangon University of Foreign Languages
-
Yezin Agricultural University
-
New Index
-
Item
{"_buckets": {"deposit": "2b4a27c7-4339-48af-ab85-54c98ce5028e"}, "_deposit": {"id": "4682", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4682"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4682", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Web Documents Clustering Using PSO Algorithm and Ontology", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "The largest sharedinformation source, theWorld Wide Web hasbeen increasing atremendous proliferationin the amount ofinformation rapidly. As aresult of its huge sharingand highly dynamicdata, there is a need forgrouping the documentsinto clusters for fasterinformation retrieval.Clustering webdocuments is collectionof documents into groupssuch that the documentswithin each group aresimilar to each other.Document clustering isone of the mainchallenging tasks in webdata mining and it is stillrequires an efficientclustering techniques.The typical way ofrepresenting a webdocument is a huge boxof terms. Therepresentation of theseterms is oftenunsatisfactory as it doesnot exploit thesemantics. This paperproposes Particle swarmOptimization (PSO) andOntology for clusteringof text documents. Adomain Ontology isdeveloped thus itenriched with semanticand synonyms for therepresentation of terms.Particle SwarmOptimization (PSO)algorithm is used tocluster high voluminousof data efficiently. Thispaper presentscomparative results ofusing PSO algorithmonly and PSO algorithmusing Ontology forclustering webdocuments. The analysisresult of test data isefficient enough inrepresentation of terms by using Ontology andthe performance of PSOclustering algorithm ishigh in intra cluster andinters cluster similarity."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "document clustering"}, {"interim": "representation of terms"}, {"interim": "PSO"}, {"interim": "Ontology"}, {"interim": "inter cluster"}, {"interim": "intra cluster"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "201655.pdf", "filesize": [{"value": "236 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 236000.0, "url": {"url": "https://meral.edu.mm/record/4682/files/201655.pdf"}, "version_id": "a02f0d7f-01c0-4dfb-9cb6-85d1bd13b368"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourteenth International Conference On Computer Applications (ICCA 2016)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Lwin, Wai Wai"}, {"subitem_authors_fullname": "Kham, Nang Saing Moon"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2016-02-25"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/345"}, "item_title": "Web Documents Clustering Using PSO Algorithm and Ontology", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004682", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "4682", "relation": {}, "relation_version_is_last": true, "title": ["Web Documents Clustering Using PSO Algorithm and Ontology"], "weko_shared_id": -1}
Web Documents Clustering Using PSO Algorithm and Ontology
http://hdl.handle.net/20.500.12678/0000004682
http://hdl.handle.net/20.500.12678/00000046820b659707-0fa5-483a-aff7-fa059b952306
2b4a27c7-4339-48af-ab85-54c98ce5028e
Name / File | License | Actions |
---|---|---|
![]() |
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Web Documents Clustering Using PSO Algorithm and Ontology | |||||
Language | en | |||||
Publication date | 2016-02-25 | |||||
Authors | ||||||
Lwin, Wai Wai | ||||||
Kham, Nang Saing Moon | ||||||
Description | ||||||
The largest sharedinformation source, theWorld Wide Web hasbeen increasing atremendous proliferationin the amount ofinformation rapidly. As aresult of its huge sharingand highly dynamicdata, there is a need forgrouping the documentsinto clusters for fasterinformation retrieval.Clustering webdocuments is collectionof documents into groupssuch that the documentswithin each group aresimilar to each other.Document clustering isone of the mainchallenging tasks in webdata mining and it is stillrequires an efficientclustering techniques.The typical way ofrepresenting a webdocument is a huge boxof terms. Therepresentation of theseterms is oftenunsatisfactory as it doesnot exploit thesemantics. This paperproposes Particle swarmOptimization (PSO) andOntology for clusteringof text documents. Adomain Ontology isdeveloped thus itenriched with semanticand synonyms for therepresentation of terms.Particle SwarmOptimization (PSO)algorithm is used tocluster high voluminousof data efficiently. Thispaper presentscomparative results ofusing PSO algorithmonly and PSO algorithmusing Ontology forclustering webdocuments. The analysisresult of test data isefficient enough inrepresentation of terms by using Ontology andthe performance of PSOclustering algorithm ishigh in intra cluster andinters cluster similarity. | ||||||
Keywords | ||||||
document clustering, representation of terms, PSO, Ontology, inter cluster, intra cluster | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/345 | |||||
Journal articles | ||||||
Fourteenth International Conference On Computer Applications (ICCA 2016) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |