Index Link

  • RootNode

Item

{"_buckets": {"deposit": "9c945bad-7671-4642-9dd0-ce70207ee769"}, "_deposit": {"id": "4672", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4672"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4672", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Modified Ant Colony Optimization Algorithm for Traveling Salesman Problem", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Ant Colony Optimization (ACO) is a usefulapproach for finding near optimal solutions inpolynomial time for NondeterministicPolynomial time (NP) problems. Travelingsalesman problem (TSP) is a typical NP hardproblem in path optimization, and ACOalgorithm is an effective way to solve TSP.However, when the problems come to highdimensions, the traditional ant algorithm workswith low efficiency and accuracy, and usuallytrap in local optimal solution. To overcome theshortcoming of the algorithm, this paperproposes a modified ant colony optimizationalgorithm which combines candidate liststrategy and local search to improve theefficiency and accuracy of the algorithm.Experiments are carried out to verify theavailability and analyze the performance of theproposed algorithm. The results illustrate thehigher efficiency of the proposed algorithm tosolve TSP, comparing with ant colony algorithmand prove that the proposed algorithm is a positive effective way to tackle TSP."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value": []}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourteenth International Conference On Computer Applications (ICCA 2016)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Hlaing, Zar Chi Su Su"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2016-02-25"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/331"}, "item_title": "Modified Ant Colony Optimization Algorithm for Traveling Salesman Problem", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004672", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "4672", "relation": {}, "relation_version_is_last": true, "title": ["Modified Ant Colony Optimization Algorithm for Traveling Salesman Problem"], "weko_shared_id": -1}

Modified Ant Colony Optimization Algorithm for Traveling Salesman Problem

http://hdl.handle.net/20.500.12678/0000004672
5cb5b4c0-dcff-431f-8abb-b721da79fc39
9c945bad-7671-4642-9dd0-ce70207ee769
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats