-
RootNode
-
Co-operative College, Mandalay
-
Cooperative College, Phaunggyi
-
Co-operative University, Sagaing
-
Co-operative University, Thanlyin
-
Dagon University
-
Kyaukse University
-
Laquarware Technological college
-
Mandalay Technological University
-
Mandalay University of Distance Education
-
Mandalay University of Foreign Languages
-
Maubin University
-
Mawlamyine University
-
Meiktila University
-
Mohnyin University
-
Myanmar Institute of Information Technology
-
Myanmar Maritime University
-
National Management Degree College
-
Naypyitaw State Academy
-
Pathein University
-
Sagaing University
-
Sagaing University of Education
-
Taunggyi University
-
Technological University, Hmawbi
-
Technological University (Kyaukse)
-
Technological University Mandalay
-
University of Computer Studies, Mandalay
-
University of Computer Studies Maubin
-
University of Computer Studies, Meikhtila
-
University of Computer Studies Pathein
-
University of Computer Studies, Taungoo
-
University of Computer Studies, Yangon
-
University of Dental Medicine Mandalay
-
University of Dental Medicine, Yangon
-
University of Information Technology
-
University of Mandalay
-
University of Medicine 1
-
University of Medicine 2
-
University of Medicine Mandalay
-
University of Myitkyina
-
University of Public Health, Yangon
-
University of Veterinary Science
-
University of Yangon
-
West Yangon University
-
Yadanabon University
-
Yangon Technological University
-
Yangon University of Distance Education
-
Yangon University of Economics
-
Yangon University of Education
-
Yangon University of Foreign Languages
-
Yezin Agricultural University
-
New Index
-
Item
{"_buckets": {"deposit": "95307a2b-c5f4-4498-aaa3-028c4e1a405d"}, "_deposit": {"id": "4596", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4596"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4596", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "A Study on a Joint Deep Learning Model for Myanmar Text Classification", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Text classification is one of the most criticalareas of research in the field of natural languageprocessing (NLP). Recently, most of the NLP tasksachieve remarkable performance by using deeplearning models. Generally, deep learning modelsrequire a huge amount of data to be utilized. Thispaper uses pre-trained word vectors to handle theresource-demanding problem and studies theeffectiveness of a joint Convolutional Neural Networkand Long Short Term Memory (CNN-LSTM) forMyanmar text classification. The comparativeanalysis is performed on the baseline ConvolutionalNeural Networks (CNN), Recurrent Neural Networks(RNN) and their combined model CNN-RNN."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "text classification"}, {"interim": "CNN"}, {"interim": "RNN"}, {"interim": "CNNRNN"}, {"interim": "CNN-LSTM"}, {"interim": "deep learning model"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-03-17"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf", "filesize": [{"value": "600 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 600000.0, "url": {"url": "https://meral.edu.mm/record/4596/files/A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf"}, "version_id": "d27e7597-2373-439e-89bf-52823d8356b9"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Proceedings of the Eighteenth International Conference On Computer Applications (ICCA 2020)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Phyu, Myat Sapal"}, {"subitem_authors_fullname": "Nwet, Khin Thandar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Other"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Other"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2020-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "978-1-7281-5925-6"}, "item_title": "A Study on a Joint Deep Learning Model for Myanmar Text Classification", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004596", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-17"}, "publish_date": "2020-03-17", "publish_status": "0", "recid": "4596", "relation": {}, "relation_version_is_last": true, "title": ["A Study on a Joint Deep Learning Model for Myanmar Text Classification"], "weko_shared_id": -1}
A Study on a Joint Deep Learning Model for Myanmar Text Classification
http://hdl.handle.net/20.500.12678/0000004596
http://hdl.handle.net/20.500.12678/0000004596f8ff625a-0c62-4ac0-ba4b-43ad5f223412
95307a2b-c5f4-4498-aaa3-028c4e1a405d
Name / File | License | Actions |
---|---|---|
![]() |
|
Publication type | ||||||
---|---|---|---|---|---|---|
Other | ||||||
Upload type | ||||||
Other | ||||||
Title | ||||||
Title | A Study on a Joint Deep Learning Model for Myanmar Text Classification | |||||
Language | en | |||||
Publication date | 2020-02-28 | |||||
Authors | ||||||
Phyu, Myat Sapal | ||||||
Nwet, Khin Thandar | ||||||
Description | ||||||
Text classification is one of the most criticalareas of research in the field of natural languageprocessing (NLP). Recently, most of the NLP tasksachieve remarkable performance by using deeplearning models. Generally, deep learning modelsrequire a huge amount of data to be utilized. Thispaper uses pre-trained word vectors to handle theresource-demanding problem and studies theeffectiveness of a joint Convolutional Neural Networkand Long Short Term Memory (CNN-LSTM) forMyanmar text classification. The comparativeanalysis is performed on the baseline ConvolutionalNeural Networks (CNN), Recurrent Neural Networks(RNN) and their combined model CNN-RNN. | ||||||
Keywords | ||||||
text classification, CNN, RNN, CNNRNN, CNN-LSTM, deep learning model | ||||||
Identifier | 978-1-7281-5925-6 | |||||
Journal articles | ||||||
Proceedings of the Eighteenth International Conference On Computer Applications (ICCA 2020) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |