Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "95307a2b-c5f4-4498-aaa3-028c4e1a405d"}, "_deposit": {"id": "4596", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4596"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4596", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "A Study on a Joint Deep Learning Model for Myanmar Text Classification", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Text classification is one of the most criticalareas of research in the field of natural languageprocessing (NLP). Recently, most of the NLP tasksachieve remarkable performance by using deeplearning models. Generally, deep learning modelsrequire a huge amount of data to be utilized. Thispaper uses pre-trained word vectors to handle theresource-demanding problem and studies theeffectiveness of a joint Convolutional Neural Networkand Long Short Term Memory (CNN-LSTM) forMyanmar text classification. The comparativeanalysis is performed on the baseline ConvolutionalNeural Networks (CNN), Recurrent Neural Networks(RNN) and their combined model CNN-RNN."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "text classification"}, {"interim": "CNN"}, {"interim": "RNN"}, {"interim": "CNNRNN"}, {"interim": "CNN-LSTM"}, {"interim": "deep learning model"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-03-17"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf", "filesize": [{"value": "600 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 600000.0, "url": {"url": "https://meral.edu.mm/record/4596/files/A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf"}, "version_id": "d27e7597-2373-439e-89bf-52823d8356b9"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Proceedings of the Eighteenth International Conference On Computer Applications (ICCA 2020)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Phyu, Myat Sapal"}, {"subitem_authors_fullname": "Nwet, Khin Thandar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Other"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Other"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2020-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "978-1-7281-5925-6"}, "item_title": "A Study on a Joint Deep Learning Model for Myanmar Text Classification", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004596", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-17"}, "publish_date": "2020-03-17", "publish_status": "0", "recid": "4596", "relation": {}, "relation_version_is_last": true, "title": ["A Study on a Joint Deep Learning Model for Myanmar Text Classification"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

A Study on a Joint Deep Learning Model for Myanmar Text Classification

http://hdl.handle.net/20.500.12678/0000004596
http://hdl.handle.net/20.500.12678/0000004596
f8ff625a-0c62-4ac0-ba4b-43ad5f223412
95307a2b-c5f4-4498-aaa3-028c4e1a405d
None
Preview
Name / File License Actions
A A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf (600 Kb)
Publication type
Other
Upload type
Other
Title
Title A Study on a Joint Deep Learning Model for Myanmar Text Classification
Language en
Publication date 2020-02-28
Authors
Phyu, Myat Sapal
Nwet, Khin Thandar
Description
Text classification is one of the most criticalareas of research in the field of natural languageprocessing (NLP). Recently, most of the NLP tasksachieve remarkable performance by using deeplearning models. Generally, deep learning modelsrequire a huge amount of data to be utilized. Thispaper uses pre-trained word vectors to handle theresource-demanding problem and studies theeffectiveness of a joint Convolutional Neural Networkand Long Short Term Memory (CNN-LSTM) forMyanmar text classification. The comparativeanalysis is performed on the baseline ConvolutionalNeural Networks (CNN), Recurrent Neural Networks(RNN) and their combined model CNN-RNN.
Keywords
text classification, CNN, RNN, CNNRNN, CNN-LSTM, deep learning model
Identifier 978-1-7281-5925-6
Journal articles
Proceedings of the Eighteenth International Conference On Computer Applications (ICCA 2020)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:09:34.044384
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL