Index Link

  • RootNode
    • Co-operative College, Mandalay
    • Cooperative College, Phaunggyi
    • Co-operative University, Sagaing
    • Co-operative University, Thanlyin
    • Dagon University
    • Kyaukse University
    • Laquarware Technological college
    • Mandalay Technological University
    • Mandalay University of Distance Education
    • Mandalay University of Foreign Languages
    • Maubin University
    • Mawlamyine University
    • Meiktila University
    • Mohnyin University
    • Myanmar Institute of Information Technology
    • Myanmar Maritime University
    • National Management Degree College
    • Naypyitaw State Academy
    • Pathein University
    • Sagaing University
    • Sagaing University of Education
    • Taunggyi University
    • Technological University, Hmawbi
    • Technological University (Kyaukse)
    • Technological University Mandalay
    • University of Computer Studies, Mandalay
    • University of Computer Studies Maubin
    • University of Computer Studies, Meikhtila
    • University of Computer Studies Pathein
    • University of Computer Studies, Taungoo
    • University of Computer Studies, Yangon
    • University of Dental Medicine Mandalay
    • University of Dental Medicine, Yangon
    • University of Information Technology
    • University of Mandalay
    • University of Medicine 1
    • University of Medicine 2
    • University of Medicine Mandalay
    • University of Myitkyina
    • University of Public Health, Yangon
    • University of Veterinary Science
    • University of Yangon
    • West Yangon University
    • Yadanabon University
    • Yangon Technological University
    • Yangon University of Distance Education
    • Yangon University of Economics
    • Yangon University of Education
    • Yangon University of Foreign Languages
    • Yezin Agricultural University
    • New Index

Item

{"_buckets": {"deposit": "95307a2b-c5f4-4498-aaa3-028c4e1a405d"}, "_deposit": {"id": "4596", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4596"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4596", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "A Study on a Joint Deep Learning Model for Myanmar Text Classification", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Text classification is one of the most criticalareas of research in the field of natural languageprocessing (NLP). Recently, most of the NLP tasksachieve remarkable performance by using deeplearning models. Generally, deep learning modelsrequire a huge amount of data to be utilized. Thispaper uses pre-trained word vectors to handle theresource-demanding problem and studies theeffectiveness of a joint Convolutional Neural Networkand Long Short Term Memory (CNN-LSTM) forMyanmar text classification. The comparativeanalysis is performed on the baseline ConvolutionalNeural Networks (CNN), Recurrent Neural Networks(RNN) and their combined model CNN-RNN."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "text classification"}, {"interim": "CNN"}, {"interim": "RNN"}, {"interim": "CNNRNN"}, {"interim": "CNN-LSTM"}, {"interim": "deep learning model"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-03-17"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf", "filesize": [{"value": "600 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 600000.0, "url": {"url": "https://meral.edu.mm/record/4596/files/A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf"}, "version_id": "d27e7597-2373-439e-89bf-52823d8356b9"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Proceedings of the Eighteenth International Conference On Computer Applications (ICCA 2020)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Phyu, Myat Sapal"}, {"subitem_authors_fullname": "Nwet, Khin Thandar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Other"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Other"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2020-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "978-1-7281-5925-6"}, "item_title": "A Study on a Joint Deep Learning Model for Myanmar Text Classification", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004596", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-17"}, "publish_date": "2020-03-17", "publish_status": "0", "recid": "4596", "relation": {}, "relation_version_is_last": true, "title": ["A Study on a Joint Deep Learning Model for Myanmar Text Classification"], "weko_shared_id": -1}

A Study on a Joint Deep Learning Model for Myanmar Text Classification

http://hdl.handle.net/20.500.12678/0000004596
f8ff625a-0c62-4ac0-ba4b-43ad5f223412
95307a2b-c5f4-4498-aaa3-028c4e1a405d
None
Name / File License Actions
A A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf (600 Kb)
Publication type
Other
Upload type
Other
Title
Title A Study on a Joint Deep Learning Model for Myanmar Text Classification
Language en
Publication date 2020-02-28
Authors
Phyu, Myat Sapal
Nwet, Khin Thandar
Description
Text classification is one of the most criticalareas of research in the field of natural languageprocessing (NLP). Recently, most of the NLP tasksachieve remarkable performance by using deeplearning models. Generally, deep learning modelsrequire a huge amount of data to be utilized. Thispaper uses pre-trained word vectors to handle theresource-demanding problem and studies theeffectiveness of a joint Convolutional Neural Networkand Long Short Term Memory (CNN-LSTM) forMyanmar text classification. The comparativeanalysis is performed on the baseline ConvolutionalNeural Networks (CNN), Recurrent Neural Networks(RNN) and their combined model CNN-RNN.
Keywords
text classification, CNN, RNN, CNNRNN, CNN-LSTM, deep learning model
Identifier 978-1-7281-5925-6
Journal articles
Proceedings of the Eighteenth International Conference On Computer Applications (ICCA 2020)
Conference papers
Books/reports/chapters
Thesis/dissertations
476
361
views
downloads
Views Downloads
CA4
CN27
DE20
GB3
ID1
IN1
MM4
NZ60
RU3
TH2
US351

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats