MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "95307a2b-c5f4-4498-aaa3-028c4e1a405d"}, "_deposit": {"id": "4596", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4596"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4596", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "A Study on a Joint Deep Learning Model for Myanmar Text Classification", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Text classification is one of the most criticalareas of research in the field of natural languageprocessing (NLP). Recently, most of the NLP tasksachieve remarkable performance by using deeplearning models. Generally, deep learning modelsrequire a huge amount of data to be utilized. Thispaper uses pre-trained word vectors to handle theresource-demanding problem and studies theeffectiveness of a joint Convolutional Neural Networkand Long Short Term Memory (CNN-LSTM) forMyanmar text classification. The comparativeanalysis is performed on the baseline ConvolutionalNeural Networks (CNN), Recurrent Neural Networks(RNN) and their combined model CNN-RNN."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "text classification"}, {"interim": "CNN"}, {"interim": "RNN"}, {"interim": "CNNRNN"}, {"interim": "CNN-LSTM"}, {"interim": "deep learning model"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-03-17"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf", "filesize": [{"value": "600 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 600000.0, "url": {"url": "https://meral.edu.mm/record/4596/files/A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf"}, "version_id": "d27e7597-2373-439e-89bf-52823d8356b9"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Proceedings of the Eighteenth International Conference On Computer Applications (ICCA 2020)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Phyu, Myat Sapal"}, {"subitem_authors_fullname": "Nwet, Khin Thandar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Other"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Other"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2020-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "978-1-7281-5925-6"}, "item_title": "A Study on a Joint Deep Learning Model for Myanmar Text Classification", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004596", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-17"}, "publish_date": "2020-03-17", "publish_status": "0", "recid": "4596", "relation": {}, "relation_version_is_last": true, "title": ["A Study on a Joint Deep Learning Model for Myanmar Text Classification"], "weko_shared_id": -1}
A Study on a Joint Deep Learning Model for Myanmar Text Classification
http://hdl.handle.net/20.500.12678/0000004596
http://hdl.handle.net/20.500.12678/0000004596f8ff625a-0c62-4ac0-ba4b-43ad5f223412
95307a2b-c5f4-4498-aaa3-028c4e1a405d
Name / File | License | Actions |
---|---|---|
A Study on a Joint Deep Learning Model for Myanmar Text Classification.pdf (600 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Other | ||||||
Upload type | ||||||
Other | ||||||
Title | ||||||
Title | A Study on a Joint Deep Learning Model for Myanmar Text Classification | |||||
Language | en | |||||
Publication date | 2020-02-28 | |||||
Authors | ||||||
Phyu, Myat Sapal | ||||||
Nwet, Khin Thandar | ||||||
Description | ||||||
Text classification is one of the most criticalareas of research in the field of natural languageprocessing (NLP). Recently, most of the NLP tasksachieve remarkable performance by using deeplearning models. Generally, deep learning modelsrequire a huge amount of data to be utilized. Thispaper uses pre-trained word vectors to handle theresource-demanding problem and studies theeffectiveness of a joint Convolutional Neural Networkand Long Short Term Memory (CNN-LSTM) forMyanmar text classification. The comparativeanalysis is performed on the baseline ConvolutionalNeural Networks (CNN), Recurrent Neural Networks(RNN) and their combined model CNN-RNN. | ||||||
Keywords | ||||||
text classification, CNN, RNN, CNNRNN, CNN-LSTM, deep learning model | ||||||
Identifier | 978-1-7281-5925-6 | |||||
Journal articles | ||||||
Proceedings of the Eighteenth International Conference On Computer Applications (ICCA 2020) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |