Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "cd71f777-377f-4933-af34-d714dd831db0"}, "_deposit": {"id": "4594", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4594"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4594", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Prediction of Software Readiness Using Neural Network", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "In this paper, we explore the behaviour of neuralnetwork in predicting software readiness. Our neural networkmodel aims to predict the number of faults (including objectoriented faults) of a software under development. We use Wardneural network that is a backpropagation network with differentactivation functions. Different activation functions are applied tohidden layer slabs to detect different features in a patternprocessed through a network. In our experiments, hyperbolictangent, Gaussian, Gaussian-complement and linear functions areused as activation functions to improve prediction. This paperalso compares the prediction results from multiple regressionmodel and neural network model. Object-oriented design metricsare used as the independent variables in our study. Our study isconducted on three industrial real-time systems that contain anumber of natural faults that has been reported over a period ofthree years."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Neural Networks"}, {"interim": "Object-oriented Design Metrics"}, {"interim": "QA in Software Development"}, {"interim": "Readiness"}, {"interim": "Reliability"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-03-16"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Prediction of Software Readiness Using Neural Network.pdf", "filesize": [{"value": "66 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 66000.0, "url": {"url": "https://meral.edu.mm/record/4594/files/Prediction of Software Readiness Using Neural Network.pdf"}, "version_id": "306c0267-7e28-4bb2-8d09-431e2ba43dc9"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Proceedings of the First International Conference on Information Technology and Applications (ICITA 2002)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Thwin, Mie Mie Thet"}, {"subitem_authors_fullname": "Quah, Tong Seng"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2002"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "1-86467-114-9"}, "item_title": "Prediction of Software Readiness Using Neural Network", "item_type_id": "21", "owner": "1", "path": ["1597824175385"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004594", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-16"}, "publish_date": "2020-03-16", "publish_status": "0", "recid": "4594", "relation": {}, "relation_version_is_last": true, "title": ["Prediction of Software Readiness Using Neural Network"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Faculty of Computer Science

Prediction of Software Readiness Using Neural Network

http://hdl.handle.net/20.500.12678/0000004594
http://hdl.handle.net/20.500.12678/0000004594
7da3d304-f18b-494a-b1cb-14ff73f5db1b
cd71f777-377f-4933-af34-d714dd831db0
None
Preview
Name / File License Actions
Prediction Prediction of Software Readiness Using Neural Network.pdf (66 Kb)
Publication type
Article
Upload type
Publication
Title
Title Prediction of Software Readiness Using Neural Network
Language en
Publication date 2002
Authors
Thwin, Mie Mie Thet
Quah, Tong Seng
Description
In this paper, we explore the behaviour of neuralnetwork in predicting software readiness. Our neural networkmodel aims to predict the number of faults (including objectoriented faults) of a software under development. We use Wardneural network that is a backpropagation network with differentactivation functions. Different activation functions are applied tohidden layer slabs to detect different features in a patternprocessed through a network. In our experiments, hyperbolictangent, Gaussian, Gaussian-complement and linear functions areused as activation functions to improve prediction. This paperalso compares the prediction results from multiple regressionmodel and neural network model. Object-oriented design metricsare used as the independent variables in our study. Our study isconducted on three industrial real-time systems that contain anumber of natural faults that has been reported over a period ofthree years.
Keywords
Neural Networks, Object-oriented Design Metrics, QA in Software Development, Readiness, Reliability
Identifier 1-86467-114-9
Journal articles
Proceedings of the First International Conference on Information Technology and Applications (ICITA 2002)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:09:23.343456
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL