Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "ce65265a-6d05-4864-aefd-426e5e79f27d"}, "_deposit": {"id": "4593", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4593"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4593", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Prediction of software development faults in PL/SQL files using neural network models", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Database application constitutes one of the largest and most important software domains in the world. Some classes or modules in suchapplications are responsible for database operations. Structured Query Language (SQL) is used to communicate with database middleware inthese classes or modules. It can be issued interactively or embedded in a host language. This paper aims to predict the software developmentfaults in PL/SQL files using SQL metrics. Based on actual project defect data, the SQL metrics are empirically validated by analyzing theirrelationship with the probability of fault detection across PL/SQL files. SQL metrics were extracted from Oracle PL/SQL code of awarehouse management database application system. The faults were collected from the journal files that contain the documentation of allchanges in source files. The result demonstrates that these measures may be useful in predicting the fault concerning with database accesses.In our study, General Regression Neural Network and Ward Neural Network are used to evaluate the capability of this set of SQL metrics inpredicting the number of faults in database applications."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Structured Query Language metrics"}, {"interim": "Software prediction"}, {"interim": "Neural network"}, {"interim": "Software metrics"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2020-03-16"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Prediction of Software Development Faults in PLSQL Files using Neural Network Models.pdf", "filesize": [{"value": "76 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 76000.0, "url": {"url": "https://meral.edu.mm/record/4593/files/Prediction of Software Development Faults in PLSQL Files using Neural Network Models.pdf"}, "version_id": "6a1a876b-0451-4855-b453-f6dedb161495"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Information and Software Technology", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Thwin, Mie Mie Thet"}, {"subitem_authors_fullname": "Quah, Tong Seng"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2004-06-15"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "0950-5849"}, "item_title": "Prediction of software development faults in PL/SQL files using neural network models", "item_type_id": "21", "owner": "1", "path": ["1597824175385"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004593", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2020-03-16"}, "publish_date": "2020-03-16", "publish_status": "0", "recid": "4593", "relation": {}, "relation_version_is_last": true, "title": ["Prediction of software development faults in PL/SQL files using neural network models"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Faculty of Computer Science

Prediction of software development faults in PL/SQL files using neural network models

http://hdl.handle.net/20.500.12678/0000004593
http://hdl.handle.net/20.500.12678/0000004593
452612af-1b74-4584-b37b-18c032507d2c
ce65265a-6d05-4864-aefd-426e5e79f27d
None
Preview
Name / File License Actions
Prediction Prediction of Software Development Faults in PLSQL Files using Neural Network Models.pdf (76 Kb)
Publication type
Article
Upload type
Publication
Title
Title Prediction of software development faults in PL/SQL files using neural network models
Language en
Publication date 2004-06-15
Authors
Thwin, Mie Mie Thet
Quah, Tong Seng
Description
Database application constitutes one of the largest and most important software domains in the world. Some classes or modules in suchapplications are responsible for database operations. Structured Query Language (SQL) is used to communicate with database middleware inthese classes or modules. It can be issued interactively or embedded in a host language. This paper aims to predict the software developmentfaults in PL/SQL files using SQL metrics. Based on actual project defect data, the SQL metrics are empirically validated by analyzing theirrelationship with the probability of fault detection across PL/SQL files. SQL metrics were extracted from Oracle PL/SQL code of awarehouse management database application system. The faults were collected from the journal files that contain the documentation of allchanges in source files. The result demonstrates that these measures may be useful in predicting the fault concerning with database accesses.In our study, General Regression Neural Network and Ward Neural Network are used to evaluate the capability of this set of SQL metrics inpredicting the number of faults in database applications.
Keywords
Structured Query Language metrics, Software prediction, Neural network, Software metrics
Identifier 0950-5849
Journal articles
Information and Software Technology
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:09:19.775304
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL