Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "a28bd3fb-c057-419c-aec0-68dab6b91a97"}, "_deposit": {"id": "4590", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4590"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4590", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Frequent Pattern Mining for Stream Data by Using Hadoop GM-Tree and GTree", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Since origination of mining, frequent patternmining has become a mandatory issue in datamining. Transaction process for mining pattern needsefficient data structures and algorithms. This systemproposed tree structure, called GMTree(Generateand Merge Tree)-GTree(Group Tree), which is ahybrid of prefix based incremental mining usingcanonical order tree and batch incrementingtechniques. Proposed system make the tree structuremore compact, canonically ordered of nodes andavoids sequential incrementing of transactions. Itgives a scalable algorithm with minimum overheadsof modifying the tree structure during updateoperations. It operates on extremely largetransaction database in dynamic environment whichis especially expected to give better results in thiscase.The proposed system used Apache Hadoop andhybrid GMTree-GTree. The results shows Hadoopimplementation of algorithm performs more timesbetter than in Java."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "65-71.pdf", "filesize": [{"value": "324 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 324000.0, "url": {"url": "https://meral.edu.mm/record/4590/files/65-71.pdf"}, "version_id": "25a76235-e602-4c4c-8445-edbc3f2e30c8"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Sixteenth International Conferences on Computer Applications(ICCA 2018)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aung, Than Htike"}, {"subitem_authors_fullname": "Kham, Nang Saing Moon"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-02-22"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/251"}, "item_title": "Frequent Pattern Mining for Stream Data by Using Hadoop GM-Tree and GTree", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004590", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "4590", "relation": {}, "relation_version_is_last": true, "title": ["Frequent Pattern Mining for Stream Data by Using Hadoop GM-Tree and GTree"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Frequent Pattern Mining for Stream Data by Using Hadoop GM-Tree and GTree

http://hdl.handle.net/20.500.12678/0000004590
http://hdl.handle.net/20.500.12678/0000004590
37a230c9-d88c-4694-85e6-4d7524fafad8
a28bd3fb-c057-419c-aec0-68dab6b91a97
None
Preview
Name / File License Actions
65-71.pdf 65-71.pdf (324 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:09:01.660904
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL