Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "84b9283f-0650-4503-aca0-6e8d7bf0c352"}, "_deposit": {"id": "4516", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4516"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4516", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Analyzing Fuzzy Models for VM Resource Usage Prediction in Virtualized Data Center", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Data Centre (DC) administrators try todelivering performance guarantees whilemanaging resources for utilization in terms ofreducing cost. With the advent of serverconsolidation provided by virtualizationtechnology, multiple heterogeneous virtualmachines (VMs) can be coexisted on a physicalserver and shared resources together. Fixedallocation of resources to VMs is not the optimalallocation method as over provisioning andunder provisioning can be caused. For dynamicallocation, simultaneous on demand provisioningof shared physical resources to VMs becomes thekey challenge.This paper proposes resource usageprediction system by making analysis on theaccuracy of three different models; Fuzzymodeling, adaptive Fuzzy modeling and NeuroFuzzy modeling. To evaluate the efficiency ofthree different models, experiments are carriedout by workload-resource mapping andresource-resource mapping approaches. CPUprofiles from real world data centre are used toanalyze through a simulating program.Experimental results show that the proposedresource prediction models can predict well nexttime interval resource usage of virtual machineeven in the condition of unexpected high spikesCPU."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "resource prediciton"}, {"interim": "virtualized data center"}, {"interim": "resource provisioning"}, {"interim": "fuzzy"}, {"interim": "adaptive fuzzy"}, {"interim": "neuro-fuzzy"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-11-15"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "10097.pdf", "filesize": [{"value": "557 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 557000.0, "url": {"url": "https://meral.edu.mm/record/4516/files/10097.pdf"}, "version_id": "6b585b97-97d0-4c99-baeb-3e6589f3ff27"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Tenth International Conference On Computer Applications (ICCA 2012)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Sithu, Mya"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2012-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2441"}, "item_title": "Analyzing Fuzzy Models for VM Resource Usage Prediction in Virtualized Data Center", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004516", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-11-15"}, "publish_date": "2019-11-15", "publish_status": "0", "recid": "4516", "relation": {}, "relation_version_is_last": true, "title": ["Analyzing Fuzzy Models for VM Resource Usage Prediction in Virtualized Data Center"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Analyzing Fuzzy Models for VM Resource Usage Prediction in Virtualized Data Center

http://hdl.handle.net/20.500.12678/0000004516
http://hdl.handle.net/20.500.12678/0000004516
6fd1d77c-b052-4890-96bb-67c0a1eca958
84b9283f-0650-4503-aca0-6e8d7bf0c352
None
Preview
Name / File License Actions
10097.pdf 10097.pdf (557 Kb)
Publication type
Article
Upload type
Publication
Title
Title Analyzing Fuzzy Models for VM Resource Usage Prediction in Virtualized Data Center
Language en_US
Publication date 2012-02-28
Authors
Sithu, Mya
Description
Data Centre (DC) administrators try todelivering performance guarantees whilemanaging resources for utilization in terms ofreducing cost. With the advent of serverconsolidation provided by virtualizationtechnology, multiple heterogeneous virtualmachines (VMs) can be coexisted on a physicalserver and shared resources together. Fixedallocation of resources to VMs is not the optimalallocation method as over provisioning andunder provisioning can be caused. For dynamicallocation, simultaneous on demand provisioningof shared physical resources to VMs becomes thekey challenge.This paper proposes resource usageprediction system by making analysis on theaccuracy of three different models; Fuzzymodeling, adaptive Fuzzy modeling and NeuroFuzzy modeling. To evaluate the efficiency ofthree different models, experiments are carriedout by workload-resource mapping andresource-resource mapping approaches. CPUprofiles from real world data centre are used toanalyze through a simulating program.Experimental results show that the proposedresource prediction models can predict well nexttime interval resource usage of virtual machineeven in the condition of unexpected high spikesCPU.
Keywords
resource prediciton, virtualized data center, resource provisioning, fuzzy, adaptive fuzzy, neuro-fuzzy
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/2441
Journal articles
Tenth International Conference On Computer Applications (ICCA 2012)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 15:00:18.740883
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL