Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "34782076-4665-4549-9e26-95a85f6328ca"}, "_deposit": {"id": "4512", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4512"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4512", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Edge-Based Facial Feature Extraction using Adaptive Canny Operator Edge Detection", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Facial feature extraction is an essential stepin the face detection and facial expressionrecognition frameworks. To develop a betterfacial expression recognition system, a goodfeature extraction method is needed. In thispaper, an efficient Facial Feature Extractionmethod for recognizing four different expressionssuch as neutral, happy, surprise and sad ispresented. In this study, adaptive canny operatoredge detection method is used to reduce thecomputational complexity and improved theaccuracy of feature point location. To validatethe performance of the proposed featureextraction, the generated features are classifiedusing Maximum Correlation Classifier (MCC).The experimental results demonstrated that theproposed feature extraction method couldgenerate significant facial features and thesefeatures are able to be classified into eachexpression. Our results also showed that theproposed feature extraction method is moreefficient than Gabor wavelet edge detectionmethod."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Adaptive Canny Operator Edge Detection"}, {"interim": "Facial Feature Extraction"}, {"interim": "Maximum Correlation Classifier"}, {"interim": "Gabar Wavelet edge detection method"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-11-15"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "10092.pdf", "filesize": [{"value": "614 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 614000.0, "url": {"url": "https://meral.edu.mm/record/4512/files/10092.pdf"}, "version_id": "b0c40ede-67ad-4d8c-934b-ec8cb0842c92"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aung, Darli Myint"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2012-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2438"}, "item_title": "Edge-Based Facial Feature Extraction using Adaptive Canny Operator Edge Detection", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004512", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-11-15"}, "publish_date": "2019-11-15", "publish_status": "0", "recid": "4512", "relation": {}, "relation_version_is_last": true, "title": ["Edge-Based Facial Feature Extraction using Adaptive Canny Operator Edge Detection"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Edge-Based Facial Feature Extraction using Adaptive Canny Operator Edge Detection

http://hdl.handle.net/20.500.12678/0000004512
http://hdl.handle.net/20.500.12678/0000004512
195f85f3-1a96-4196-bd8c-65ed6a16c782
34782076-4665-4549-9e26-95a85f6328ca
None
Preview
Name / File License Actions
10092.pdf 10092.pdf (614 Kb)
Publication type
Article
Upload type
Publication
Title
Title Edge-Based Facial Feature Extraction using Adaptive Canny Operator Edge Detection
Language en_US
Publication date 2012-02-28
Authors
Aung, Darli Myint
Description
Facial feature extraction is an essential stepin the face detection and facial expressionrecognition frameworks. To develop a betterfacial expression recognition system, a goodfeature extraction method is needed. In thispaper, an efficient Facial Feature Extractionmethod for recognizing four different expressionssuch as neutral, happy, surprise and sad ispresented. In this study, adaptive canny operatoredge detection method is used to reduce thecomputational complexity and improved theaccuracy of feature point location. To validatethe performance of the proposed featureextraction, the generated features are classifiedusing Maximum Correlation Classifier (MCC).The experimental results demonstrated that theproposed feature extraction method couldgenerate significant facial features and thesefeatures are able to be classified into eachexpression. Our results also showed that theproposed feature extraction method is moreefficient than Gabor wavelet edge detectionmethod.
Keywords
Adaptive Canny Operator Edge Detection, Facial Feature Extraction, Maximum Correlation Classifier, Gabar Wavelet edge detection method
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/2438
Journal articles
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:59:40.052516
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL