MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "786779a6-09d6-4bee-b824-763a314eaa60"}, "_deposit": {"id": "4466", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4466"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4466", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Analysis of Web User Clustering based on Users’ Access Behavior", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "World Wide Web overwhelms us with theimmense amounts of widely distributedinterconnected, rich and dynamicinformation. Provision of services to userscorrectly according to their needs is one ofthe most important issues in Web. However,provision of services to individual users’need is time consuming and overburden forthe web site developers or administrator.Not only for the developers but also for theusers, group-based service provision canfulfill this situation at the same time. In thispaper, clustering algorithms: SelfOrganizing Map (SOM) and K-Means areused to analyze the users’ access behavior.The correctness of the clustering algorithmsis tested with two external validationindexes. Our implementation results showthat SOM gives better results than K-Means."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-11-13"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "10035.pdf", "filesize": [{"value": "583 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 583000.0, "url": {"url": "https://meral.edu.mm/record/4466/files/10035.pdf"}, "version_id": "8d481788-85d9-419c-8c1f-e2209974192d"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Tenth International Conference On Computer Applications (ICCA 2012)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Shwe, Theint Theint"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2012-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2396"}, "item_title": "Analysis of Web User Clustering based on Users’ Access Behavior", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004466", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-11-13"}, "publish_date": "2019-11-13", "publish_status": "0", "recid": "4466", "relation": {}, "relation_version_is_last": true, "title": ["Analysis of Web User Clustering based on Users’ Access Behavior"], "weko_shared_id": -1}
Analysis of Web User Clustering based on Users’ Access Behavior
http://hdl.handle.net/20.500.12678/0000004466
http://hdl.handle.net/20.500.12678/0000004466aba4db2d-a9cc-4315-96b7-6da3ed5bf6cd
786779a6-09d6-4bee-b824-763a314eaa60
Name / File | License | Actions |
---|---|---|
![]() |
|