Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "b6871112-b771-4c74-9ee3-1f7be4adf822"}, "_deposit": {"id": "4452", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4452"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4452", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Automatic Age Prediction of Aging Effects on Face Images", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Automatic age prediction system for grayscale facial images is proposed in this paper. Tenage groups, including, are used in the predictionsystem. The process of the system is divided intothree phases: location, feature extraction, andage prediction. Principal Component Analysis(PCA) was used to reduce dimension andenhance class. Finally Euclidean distance wasused to classify the images into one of sevenmajor groups. These groups are: Group1 (0 to10 years), Group2 (11 to 20 years), Group3 (21to 30 years), Group4 (31 to 40 years), Group5(41 to 50 years), Group6 (51 to 60 years) andGroup7 (60 over). The proposed system isexperimented with 1300 facial images on a Core2 Duo processor with 2 GB RAM. One half of theimages are used for training and the other halffor test. It takes 0.2 second to classify an imageon an average. The identification rate achieves95.5% for the training images and 85.5% for thetest images, which is roughly close to human’ssubjective prediction."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Age Prediction"}, {"interim": "Feature Extraction"}, {"interim": "Principal component Analysis (PCA)"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-11-13"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "10016.pdf", "filesize": [{"value": "499 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 499000.0, "url": {"url": "https://meral.edu.mm/record/4452/files/10016.pdf"}, "version_id": "d99c16f7-5286-4412-a03e-8b6db9e1883c"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Tenth International Conference On Computer Applications (ICCA 2012)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Tin, Hlaing Htake Khaung"}, {"subitem_authors_fullname": "Sein, Myint Myint"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2012-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2383"}, "item_title": "Automatic Age Prediction of Aging Effects on Face Images", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004452", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-11-13"}, "publish_date": "2019-11-13", "publish_status": "0", "recid": "4452", "relation": {}, "relation_version_is_last": true, "title": ["Automatic Age Prediction of Aging Effects on Face Images"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Automatic Age Prediction of Aging Effects on Face Images

http://hdl.handle.net/20.500.12678/0000004452
http://hdl.handle.net/20.500.12678/0000004452
47247171-7ae2-4f3f-a3cb-70841b7aff33
b6871112-b771-4c74-9ee3-1f7be4adf822
None
Preview
Name / File License Actions
10016.pdf 10016.pdf (499 Kb)
Publication type
Article
Upload type
Publication
Title
Title Automatic Age Prediction of Aging Effects on Face Images
Language en_US
Publication date 2012-02-28
Authors
Tin, Hlaing Htake Khaung
Sein, Myint Myint
Description
Automatic age prediction system for grayscale facial images is proposed in this paper. Tenage groups, including, are used in the predictionsystem. The process of the system is divided intothree phases: location, feature extraction, andage prediction. Principal Component Analysis(PCA) was used to reduce dimension andenhance class. Finally Euclidean distance wasused to classify the images into one of sevenmajor groups. These groups are: Group1 (0 to10 years), Group2 (11 to 20 years), Group3 (21to 30 years), Group4 (31 to 40 years), Group5(41 to 50 years), Group6 (51 to 60 years) andGroup7 (60 over). The proposed system isexperimented with 1300 facial images on a Core2 Duo processor with 2 GB RAM. One half of theimages are used for training and the other halffor test. It takes 0.2 second to classify an imageon an average. The identification rate achieves95.5% for the training images and 85.5% for thetest images, which is roughly close to human’ssubjective prediction.
Keywords
Age Prediction, Feature Extraction, Principal component Analysis (PCA)
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/2383
Journal articles
Tenth International Conference On Computer Applications (ICCA 2012)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:50:23.687442
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL