Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "742ddd7c-134c-4ebb-8411-eb8651ea6a96"}, "_deposit": {"id": "4447", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4447"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4447", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Effective Feature Selection for Preprocessing Step of Classification Using Modified-MCA", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "A novel metric that integrates the correlationand reliability information between each featureand each class obtained from MultipleCorrespondence Analysis (MCA) is currently thepopular solution to score the features for featureselection. However, it has the disadvantage thatp-value which examines the reliability isconventional confidence interval. The main goalof this paper is to introduce a new classifierindependent (filter-based) feature selectionmethod, Modified Multiple CorrespondenceAnalysis (Modified-MCA) which is designed tomodify MCA, improving the reliability. Theefficiency and effectiveness of proposed methodis demonstrated through extensive comparisonswith MCA and other feature selection methods,using five benchmark datasets provided byWEKA and UCI repository. Naïve Bayes,Decision Tree and JRip are used as theclassifiers. The classification results, in terms ofclassification accuracy and size of featuresubspace, show that the proposed ModifiedMCA outperforms three other feature selectionmethods, MCA, Information Gain, and Relief"}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-11-13"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "10007.pdf", "filesize": [{"value": "907 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 907000.0, "url": {"url": "https://meral.edu.mm/record/4447/files/10007.pdf"}, "version_id": "385abfda-f34c-481d-a33d-d1384687f530"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Tenth International Conference On Computer Applications (ICCA 2012)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Khaing, Myo"}, {"subitem_authors_fullname": "Kham, Nang Saing Moon"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2012-02-28"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2379"}, "item_title": "Effective Feature Selection for Preprocessing Step of Classification Using Modified-MCA", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004447", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-11-13"}, "publish_date": "2019-11-13", "publish_status": "0", "recid": "4447", "relation": {}, "relation_version_is_last": true, "title": ["Effective Feature Selection for Preprocessing Step of Classification Using Modified-MCA"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Effective Feature Selection for Preprocessing Step of Classification Using Modified-MCA

http://hdl.handle.net/20.500.12678/0000004447
http://hdl.handle.net/20.500.12678/0000004447
2fc942a5-b49b-48e3-ac86-ea5167d6a6be
742ddd7c-134c-4ebb-8411-eb8651ea6a96
None
Preview
Name / File License Actions
10007.pdf 10007.pdf (907 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:49:37.494389
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL