Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "c35af557-c287-4bac-8d2f-76843fc7bd0d"}, "_deposit": {"id": "4417", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4417"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4417", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Natural Scene Interactive Segmentation Using Edge Detection and Maximal Similarity Region Merging", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "A fundamental problem in image processing isimage segmentation. The conventional imagesegmentation methods, to some extent, all suffer fromthe problem of inaccurate segmentation. A slightlyeasier and more approachable problem, interactivesegmentation, has also received a lot of attentions overthe years. In this paper, we propose a fast and simpleinteractive image segmentation technique. Thissegmentation process is conducted in two modules.First, the original image is detected by canny edgedetection method. Second, the object ofinterest issegmented by using the region merging based onmaximal similarity. In this work, color feature is usedto measure the closeness between two regions andaccordingly the label of the unmarked region isdecided. The proposed method extracts the object fromthe complex background in the image. Theeffectiveness of the proposed method is validated byexperimental results and compared with other method."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Interactive Image Segmentation"}, {"interim": "Edge Detection"}, {"interim": "RGB color histogram"}, {"interim": "Region Merging"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-10-25"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Natural Scene Interactive Segmentation Using Edge Detection and Maximal Similarity Region Merging.pdf", "filesize": [{"value": "765 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 765000.0, "url": {"url": "https://meral.edu.mm/record/4417/files/Natural Scene Interactive Segmentation Using Edge Detection and Maximal Similarity Region Merging.pdf"}, "version_id": "20dc8ad1-4a7b-40c6-8e2b-9041b397784b"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Thirteenth International Conference On Computer Applications (ICCA 2015)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Win, May Thu"}, {"subitem_authors_fullname": "Win, Kay Thi"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2015-02-05"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2351"}, "item_title": "Natural Scene Interactive Segmentation Using Edge Detection and Maximal Similarity Region Merging", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004417", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-10-25"}, "publish_date": "2019-10-25", "publish_status": "0", "recid": "4417", "relation": {}, "relation_version_is_last": true, "title": ["Natural Scene Interactive Segmentation Using Edge Detection and Maximal Similarity Region Merging"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Natural Scene Interactive Segmentation Using Edge Detection and Maximal Similarity Region Merging

http://hdl.handle.net/20.500.12678/0000004417
http://hdl.handle.net/20.500.12678/0000004417
63e145e9-8b27-4d11-a275-48c8da980106
c35af557-c287-4bac-8d2f-76843fc7bd0d
None
Preview
Name / File License Actions
Natural Natural Scene Interactive Segmentation Using Edge Detection and Maximal Similarity Region Merging.pdf (765 Kb)
Publication type
Article
Upload type
Publication
Title
Title Natural Scene Interactive Segmentation Using Edge Detection and Maximal Similarity Region Merging
Language en_US
Publication date 2015-02-05
Authors
Win, May Thu
Win, Kay Thi
Description
A fundamental problem in image processing isimage segmentation. The conventional imagesegmentation methods, to some extent, all suffer fromthe problem of inaccurate segmentation. A slightlyeasier and more approachable problem, interactivesegmentation, has also received a lot of attentions overthe years. In this paper, we propose a fast and simpleinteractive image segmentation technique. Thissegmentation process is conducted in two modules.First, the original image is detected by canny edgedetection method. Second, the object ofinterest issegmented by using the region merging based onmaximal similarity. In this work, color feature is usedto measure the closeness between two regions andaccordingly the label of the unmarked region isdecided. The proposed method extracts the object fromthe complex background in the image. Theeffectiveness of the proposed method is validated byexperimental results and compared with other method.
Keywords
Interactive Image Segmentation, Edge Detection, RGB color histogram, Region Merging
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/2351
Journal articles
Thirteenth International Conference On Computer Applications (ICCA 2015)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:44:53.952925
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL