Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "f13f2fd2-4ae8-4be2-a011-ee621a75458f"}, "_deposit": {"id": "4410", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4410"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4410", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Brain Computer Interface (BCI) Systems havedeveloped for new way of communication betweencomputer and human who are suffer from severe motordisabilities and difficult to communicate with theirenvironment. BCI let them for communication by nonmuscular way. For communication between human andcomputer, BCI uses a type of signal calledElectroencephalogram (EEG) signal which arerecorded from the human‘s brain by mean of electrode.Electroencephalogram (EEG) signal is an importantinformation source for knowing brain processes for thenon-invasive BCI. In translating human’s thought, itneeds to classify acquired EEG signal accurately.Independent Component analysis (ICA) method viaEEGLab Tools for removing artifacts which are causedby eye blinks in the recorded mental task EEG signal.For features extraction, the Time and Frequencyfeatures of non stationary EEG signals are extractedby Matching Pursuit (MP) algorithm. Theclassification of mental tasks is performed byMulti_Class Support Vector Machine (SVM)."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "BCI"}, {"interim": "EEG"}, {"interim": "ICA"}, {"interim": "SVM"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-10-25"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Analysis of Matching Pursuit Features of EEG Signal.pdf", "filesize": [{"value": "808 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 808000.0, "url": {"url": "https://meral.edu.mm/record/4410/files/Analysis of Matching Pursuit Features of EEG Signal.pdf"}, "version_id": "5b4a055f-700c-45b8-a238-ff60953af1cc"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Thirteenth International Conference On Computer Applications (ICCA 2015)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Lwin, Zin Mar"}, {"subitem_authors_fullname": "Thaw, Mie Mie"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2015-02-05"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2344"}, "item_title": "Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004410", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-10-25"}, "publish_date": "2019-10-25", "publish_status": "0", "recid": "4410", "relation": {}, "relation_version_is_last": true, "title": ["Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification

http://hdl.handle.net/20.500.12678/0000004410
http://hdl.handle.net/20.500.12678/0000004410
a6ddcc38-2dbb-4340-8839-a6195f81780a
f13f2fd2-4ae8-4be2-a011-ee621a75458f
None
Preview
Name / File License Actions
Analysis Analysis of Matching Pursuit Features of EEG Signal.pdf (808 Kb)
Publication type
Article
Upload type
Publication
Title
Title Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification
Language en_US
Publication date 2015-02-05
Authors
Lwin, Zin Mar
Thaw, Mie Mie
Description
Brain Computer Interface (BCI) Systems havedeveloped for new way of communication betweencomputer and human who are suffer from severe motordisabilities and difficult to communicate with theirenvironment. BCI let them for communication by nonmuscular way. For communication between human andcomputer, BCI uses a type of signal calledElectroencephalogram (EEG) signal which arerecorded from the human‘s brain by mean of electrode.Electroencephalogram (EEG) signal is an importantinformation source for knowing brain processes for thenon-invasive BCI. In translating human’s thought, itneeds to classify acquired EEG signal accurately.Independent Component analysis (ICA) method viaEEGLab Tools for removing artifacts which are causedby eye blinks in the recorded mental task EEG signal.For features extraction, the Time and Frequencyfeatures of non stationary EEG signals are extractedby Matching Pursuit (MP) algorithm. Theclassification of mental tasks is performed byMulti_Class Support Vector Machine (SVM).
Keywords
BCI, EEG, ICA, SVM
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/2344
Journal articles
Thirteenth International Conference On Computer Applications (ICCA 2015)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:43:27.975205
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL