MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "32b9a72b-a158-4379-b2d3-17b361db6fd9"}, "_deposit": {"id": "4386", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4386"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4386", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Myanmar Word Stemming and Part-of-Speech Tagging using Rule Based Approach", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Myanmar language is spoken by more than 33million people and use itas an official language of theRepublic of the Union of Myanmar in bothverbal andwritten communication. With the rapid growth ofdigital content in Myanmar Language, applicationslike machine learning, translation and informationretrieval become popular and it required to obtainthe effective Natural Language Processing (NLP)studies.The main objective of this paper is to studyMyanmar words morphology, to implement n-grambased word segmentation and to proposegrammatical stemming rules and POS tagging rulesfor Myanmar language. So, this paper proposed theword segmentation, stemming and POS taggingbased on n-gram method and rule-based stemmingmethod that has the ability to cope the challenges ofMyanmar NLP tasks. The proposed system not onlygenerates the segmented words but also generates thestemmed words with POS tag by removing prefixes,infixes and suffixes. The proposed system provides80% to 85 % accuracy. The data are collected fromseveral online sources and the system is implementedusing Python language."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Natural Language Processing"}, {"interim": "segmentation"}, {"interim": "n-gram"}, {"interim": "rule-based, stemming"}, {"interim": "POS tagging"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-10-15"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "NJPSC 2019 Proceedings-pages-226-231.pdf", "filesize": [{"value": "354 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 354000.0, "url": {"url": "https://meral.edu.mm/record/4386/files/NJPSC 2019 Proceedings-pages-226-231.pdf"}, "version_id": "cfe3266b-9d36-48ac-a71a-eea64594ea0e"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "National Journal of Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Minn, Kyaw Htet"}, {"subitem_authors_fullname": "Soe, Khin Mar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-03"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2322"}, "item_title": "Myanmar Word Stemming and Part-of-Speech Tagging using Rule Based Approach", "item_type_id": "21", "owner": "1", "path": ["1597824304333"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004386", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-10-15"}, "publish_date": "2019-10-15", "publish_status": "0", "recid": "4386", "relation": {}, "relation_version_is_last": true, "title": ["Myanmar Word Stemming and Part-of-Speech Tagging using Rule Based Approach"], "weko_shared_id": -1}
Myanmar Word Stemming and Part-of-Speech Tagging using Rule Based Approach
http://hdl.handle.net/20.500.12678/0000004386
http://hdl.handle.net/20.500.12678/0000004386aa16662c-f720-48a7-83c8-14fc6d48cc70
32b9a72b-a158-4379-b2d3-17b361db6fd9
Name / File | License | Actions |
---|---|---|
NJPSC 2019 Proceedings-pages-226-231.pdf (354 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Myanmar Word Stemming and Part-of-Speech Tagging using Rule Based Approach | |||||
Language | en_US | |||||
Publication date | 2019-03 | |||||
Authors | ||||||
Minn, Kyaw Htet | ||||||
Soe, Khin Mar | ||||||
Description | ||||||
Myanmar language is spoken by more than 33million people and use itas an official language of theRepublic of the Union of Myanmar in bothverbal andwritten communication. With the rapid growth ofdigital content in Myanmar Language, applicationslike machine learning, translation and informationretrieval become popular and it required to obtainthe effective Natural Language Processing (NLP)studies.The main objective of this paper is to studyMyanmar words morphology, to implement n-grambased word segmentation and to proposegrammatical stemming rules and POS tagging rulesfor Myanmar language. So, this paper proposed theword segmentation, stemming and POS taggingbased on n-gram method and rule-based stemmingmethod that has the ability to cope the challenges ofMyanmar NLP tasks. The proposed system not onlygenerates the segmented words but also generates thestemmed words with POS tag by removing prefixes,infixes and suffixes. The proposed system provides80% to 85 % accuracy. The data are collected fromseveral online sources and the system is implementedusing Python language. | ||||||
Keywords | ||||||
Natural Language Processing, segmentation, n-gram, rule-based, stemming, POS tagging | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/2322 | |||||
Journal articles | ||||||
National Journal of Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |