Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "32b9a72b-a158-4379-b2d3-17b361db6fd9"}, "_deposit": {"id": "4386", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4386"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4386", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Myanmar Word Stemming and Part-of-Speech Tagging using Rule Based Approach", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Myanmar language is spoken by more than 33million people and use itas an official language of theRepublic of the Union of Myanmar in bothverbal andwritten communication. With the rapid growth ofdigital content in Myanmar Language, applicationslike machine learning, translation and informationretrieval become popular and it required to obtainthe effective Natural Language Processing (NLP)studies.The main objective of this paper is to studyMyanmar words morphology, to implement n-grambased word segmentation and to proposegrammatical stemming rules and POS tagging rulesfor Myanmar language. So, this paper proposed theword segmentation, stemming and POS taggingbased on n-gram method and rule-based stemmingmethod that has the ability to cope the challenges ofMyanmar NLP tasks. The proposed system not onlygenerates the segmented words but also generates thestemmed words with POS tag by removing prefixes,infixes and suffixes. The proposed system provides80% to 85 % accuracy. The data are collected fromseveral online sources and the system is implementedusing Python language."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Natural Language Processing"}, {"interim": "segmentation"}, {"interim": "n-gram"}, {"interim": "rule-based, stemming"}, {"interim": "POS tagging"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-10-15"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "NJPSC 2019 Proceedings-pages-226-231.pdf", "filesize": [{"value": "354 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 354000.0, "url": {"url": "https://meral.edu.mm/record/4386/files/NJPSC 2019 Proceedings-pages-226-231.pdf"}, "version_id": "cfe3266b-9d36-48ac-a71a-eea64594ea0e"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "National Journal of Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Minn, Kyaw Htet"}, {"subitem_authors_fullname": "Soe, Khin Mar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-03"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2322"}, "item_title": "Myanmar Word Stemming and Part-of-Speech Tagging using Rule Based Approach", "item_type_id": "21", "owner": "1", "path": ["1597824304333"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004386", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-10-15"}, "publish_date": "2019-10-15", "publish_status": "0", "recid": "4386", "relation": {}, "relation_version_is_last": true, "title": ["Myanmar Word Stemming and Part-of-Speech Tagging using Rule Based Approach"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Journals

Myanmar Word Stemming and Part-of-Speech Tagging using Rule Based Approach

http://hdl.handle.net/20.500.12678/0000004386
http://hdl.handle.net/20.500.12678/0000004386
aa16662c-f720-48a7-83c8-14fc6d48cc70
32b9a72b-a158-4379-b2d3-17b361db6fd9
None
Preview
Name / File License Actions
NJPSC NJPSC 2019 Proceedings-pages-226-231.pdf (354 Kb)
Publication type
Article
Upload type
Publication
Title
Title Myanmar Word Stemming and Part-of-Speech Tagging using Rule Based Approach
Language en_US
Publication date 2019-03
Authors
Minn, Kyaw Htet
Soe, Khin Mar
Description
Myanmar language is spoken by more than 33million people and use itas an official language of theRepublic of the Union of Myanmar in bothverbal andwritten communication. With the rapid growth ofdigital content in Myanmar Language, applicationslike machine learning, translation and informationretrieval become popular and it required to obtainthe effective Natural Language Processing (NLP)studies.The main objective of this paper is to studyMyanmar words morphology, to implement n-grambased word segmentation and to proposegrammatical stemming rules and POS tagging rulesfor Myanmar language. So, this paper proposed theword segmentation, stemming and POS taggingbased on n-gram method and rule-based stemmingmethod that has the ability to cope the challenges ofMyanmar NLP tasks. The proposed system not onlygenerates the segmented words but also generates thestemmed words with POS tag by removing prefixes,infixes and suffixes. The proposed system provides80% to 85 % accuracy. The data are collected fromseveral online sources and the system is implementedusing Python language.
Keywords
Natural Language Processing, segmentation, n-gram, rule-based, stemming, POS tagging
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/2322
Journal articles
National Journal of Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:38:57.613874
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL