Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "dcd91b7e-55c3-4512-bc7d-3dd2ad33a35a"}, "_deposit": {"id": "4383", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4383"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4383", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Efficient Interactive Segmentation using Modified Maximal Similarity Region Merging", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Interactive image segmentation has manyapplications in image processing, computervision, computer graphics and medical imageanalysis. In medical applications, imagesegmentation is a fundamental process in mostsystems that support medical diagnosis, surgicalplanning and treatments. In many editing tasks,the aim is to separate a foreground object fromits background. Therefore, we propose a fast andsimple interactive image segmentation techniquein this paper. The proposed methodautomatically merges the regions that areinitially segmented by mean shift segmentation,and then effectively extracts the object contourby labeling all the non-marker regions as eitherbackground or object. Moreover, manyexperiments are tested and the results show thatthe proposed method is faster than the existingmethod. Therefore, the proposed method iseffective and can quickly and accurately segmentfor both medical and natural scene images with ease."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Interactive Image Segmentation"}, {"interim": "Initial Segmentation"}, {"interim": "RGB color histogram"}, {"interim": "Region Merging"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "201616.pdf", "filesize": [{"value": "477 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 477000.0, "url": {"url": "https://meral.edu.mm/record/4383/files/201616.pdf"}, "version_id": "690004ae-1059-493e-a9fe-5017a6400c5a"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourteenth International Conference On Computer Applications (ICCA 2016)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Win, May Thu"}, {"subitem_authors_fullname": "Win, Kay Thi"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2016-02-25"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/232"}, "item_title": "Efficient Interactive Segmentation using Modified Maximal Similarity Region Merging", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004383", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "4383", "relation": {}, "relation_version_is_last": true, "title": ["Efficient Interactive Segmentation using Modified Maximal Similarity Region Merging"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Efficient Interactive Segmentation using Modified Maximal Similarity Region Merging

http://hdl.handle.net/20.500.12678/0000004383
http://hdl.handle.net/20.500.12678/0000004383
bd0a94d0-e39b-4d2d-8369-1305bd9507cd
dcd91b7e-55c3-4512-bc7d-3dd2ad33a35a
None
Preview
Name / File License Actions
201616.pdf 201616.pdf (477 Kb)
Publication type
Article
Upload type
Publication
Title
Title Efficient Interactive Segmentation using Modified Maximal Similarity Region Merging
Language en
Publication date 2016-02-25
Authors
Win, May Thu
Win, Kay Thi
Description
Interactive image segmentation has manyapplications in image processing, computervision, computer graphics and medical imageanalysis. In medical applications, imagesegmentation is a fundamental process in mostsystems that support medical diagnosis, surgicalplanning and treatments. In many editing tasks,the aim is to separate a foreground object fromits background. Therefore, we propose a fast andsimple interactive image segmentation techniquein this paper. The proposed methodautomatically merges the regions that areinitially segmented by mean shift segmentation,and then effectively extracts the object contourby labeling all the non-marker regions as eitherbackground or object. Moreover, manyexperiments are tested and the results show thatthe proposed method is faster than the existingmethod. Therefore, the proposed method iseffective and can quickly and accurately segmentfor both medical and natural scene images with ease.
Keywords
Interactive Image Segmentation, Initial Segmentation, RGB color histogram, Region Merging
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/232
Journal articles
Fourteenth International Conference On Computer Applications (ICCA 2016)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:38:34.082453
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL