-
RootNode
-
Co-operative College, Mandalay
-
Cooperative College, Phaunggyi
-
Co-operative University, Sagaing
-
Co-operative University, Thanlyin
-
Dagon University
-
Kyaukse University
-
Laquarware Technological college
-
Mandalay Technological University
-
Mandalay University of Distance Education
-
Mandalay University of Foreign Languages
-
Maubin University
-
Mawlamyine University
-
Meiktila University
-
Mohnyin University
-
Myanmar Institute of Information Technology
-
Myanmar Maritime University
-
National Management Degree College
-
Naypyitaw State Academy
-
Pathein University
-
Sagaing University
-
Sagaing University of Education
-
Taunggyi University
-
Technological University, Hmawbi
-
Technological University (Kyaukse)
-
Technological University Mandalay
-
University of Computer Studies, Mandalay
-
University of Computer Studies Maubin
-
University of Computer Studies, Meikhtila
-
University of Computer Studies Pathein
-
University of Computer Studies, Taungoo
-
University of Computer Studies, Yangon
-
University of Dental Medicine Mandalay
-
University of Dental Medicine, Yangon
-
University of Information Technology
-
University of Mandalay
-
University of Medicine 1
-
University of Medicine 2
-
University of Medicine Mandalay
-
University of Myitkyina
-
University of Public Health, Yangon
-
University of Veterinary Science
-
University of Yangon
-
West Yangon University
-
Yadanabon University
-
Yangon Technological University
-
Yangon University of Distance Education
-
Yangon University of Economics
-
Yangon University of Education
-
Yangon University of Foreign Languages
-
Yezin Agricultural University
-
New Index
-
Item
{"_buckets": {"deposit": "623cc00c-2bf1-47b5-9141-eb2c50fa7e60"}, "_deposit": {"id": "4381", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4381"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4381", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Content Based Image Classification And Retrieval Using Support Vector Machine", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Content-based image retrieval (CBIR) systemsare a special type of Information Retrieval (IR) systemwhere the elements in the repository are pictures. IRworks with finding digital resources in large databases.CBIR is developed to retrieve the desired target imagefrom the large collection of images based on thecontents of the given query image. The Contents ofimage can be extracted from any images which arespecified color, shape, texture or any othercharacteristics of images. The system derived two typesof different color features - color moment and colorauto-correlogram. The moments of image can be usedto indicate color distribution of an image which can bedescribed as a probability distribution of colors. Tocalculate the spatial correlation of pairs of colordifferent with distance, color correlogram is introducedin the system. Gabor wavelets are used to expresstexture of natural image. The characteristics of Gaborwavelets are similar to those of human visual features.The system firstly created the features vector with thesethree types of features and used to get higher retrievalresults of system. To gives the better result in retrievalof system and classify the query image, Support VectorMachine classifier is used with the combination ofthese visual features."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "color moment"}, {"interim": "color auto-correlogram"}, {"interim": "Gabor wavelet"}, {"interim": "feature vector"}, {"interim": "Support Vector Machine"}, {"interim": "visual features"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-10-15"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "NJPSC 2019 Proceedings-pages-199-206.pdf", "filesize": [{"value": "979 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 979000.0, "url": {"url": "https://meral.edu.mm/record/4381/files/NJPSC 2019 Proceedings-pages-199-206.pdf"}, "version_id": "1147300e-acd3-44ee-aa43-1cb1d8fe2b89"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "National Journal of Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Thinzar, Chu"}, {"subitem_authors_fullname": "Tin, Hlaing Htake Kaung"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-03"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2318"}, "item_title": "Content Based Image Classification And Retrieval Using Support Vector Machine", "item_type_id": "21", "owner": "1", "path": ["1597824304333"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004381", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-10-15"}, "publish_date": "2019-10-15", "publish_status": "0", "recid": "4381", "relation": {}, "relation_version_is_last": true, "title": ["Content Based Image Classification And Retrieval Using Support Vector Machine"], "weko_shared_id": -1}
Content Based Image Classification And Retrieval Using Support Vector Machine
http://hdl.handle.net/20.500.12678/0000004381
http://hdl.handle.net/20.500.12678/000000438124db8f0a-b97b-4f69-a266-997e628e7e5c
623cc00c-2bf1-47b5-9141-eb2c50fa7e60
Name / File | License | Actions |
---|---|---|
![]() |
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Content Based Image Classification And Retrieval Using Support Vector Machine | |||||
Language | en_US | |||||
Publication date | 2019-03 | |||||
Authors | ||||||
Thinzar, Chu | ||||||
Tin, Hlaing Htake Kaung | ||||||
Description | ||||||
Content-based image retrieval (CBIR) systemsare a special type of Information Retrieval (IR) systemwhere the elements in the repository are pictures. IRworks with finding digital resources in large databases.CBIR is developed to retrieve the desired target imagefrom the large collection of images based on thecontents of the given query image. The Contents ofimage can be extracted from any images which arespecified color, shape, texture or any othercharacteristics of images. The system derived two typesof different color features - color moment and colorauto-correlogram. The moments of image can be usedto indicate color distribution of an image which can bedescribed as a probability distribution of colors. Tocalculate the spatial correlation of pairs of colordifferent with distance, color correlogram is introducedin the system. Gabor wavelets are used to expresstexture of natural image. The characteristics of Gaborwavelets are similar to those of human visual features.The system firstly created the features vector with thesethree types of features and used to get higher retrievalresults of system. To gives the better result in retrievalof system and classify the query image, Support VectorMachine classifier is used with the combination ofthese visual features. | ||||||
Keywords | ||||||
color moment, color auto-correlogram, Gabor wavelet, feature vector, Support Vector Machine, visual features | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/2318 | |||||
Journal articles | ||||||
National Journal of Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |