Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "ca46bad2-eb8c-4a7f-bb45-97d67472a015"}, "_deposit": {"id": "4353", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4353"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4353", "sets": ["1597824304333", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Isolated Myanmar Speech Recognition via ANN", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Automatic Speech Recognition (ASR) is a popularand challenging area of research in human computerinteraction. This paper presents an isolated Myanmarspeech recognition system that is speaker dependentas well as speaker independent and developed byusing Artificial Neural Network techniques. In thissystem, the Mel Frequency Cepstral Coefficientsextracted from the manually preprocessed words areconsidered as the features to acoustically identify thespeeches. Those features are then used to train andtest the Backpropagation neural network model. Thissystem uses a database of 2800 utterances (names ofthe cities in Myanmar) by 10 talkers (4 males and 6females), from which 2400 utterances are used fortraining and 400 are used for testing and recognition.As per the experimental results, the proposed systemachieved the recognition rate of about 93.5% forknown speakers (i.e., speaker dependent) and 76.5%for unknown speakers (i.e., speaker independent)."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "ASR"}, {"interim": "isolated speech"}, {"interim": "ANN"}, {"interim": "MFCC"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-10-15"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "NJPSC 2019 Proceedings-pages-28-33.pdf", "filesize": [{"value": "320 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 320000.0, "url": {"url": "https://meral.edu.mm/record/4353/files/NJPSC 2019 Proceedings-pages-28-33.pdf"}, "version_id": "7cf3f09d-3281-49b3-a2ab-24ea0f84ebc0"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "University of Computer Studies, Yangon", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Hsan, Nan Phyu Phyu"}, {"subitem_authors_fullname": "Oo, Twe Ta"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-03"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2292"}, "item_title": "Isolated Myanmar Speech Recognition via ANN", "item_type_id": "21", "owner": "1", "path": ["1597824304333"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004353", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-10-15"}, "publish_date": "2019-10-15", "publish_status": "0", "recid": "4353", "relation": {}, "relation_version_is_last": true, "title": ["Isolated Myanmar Speech Recognition via ANN"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Journals

Isolated Myanmar Speech Recognition via ANN

http://hdl.handle.net/20.500.12678/0000004353
http://hdl.handle.net/20.500.12678/0000004353
9137da45-272d-440c-a0cc-fbba55298a26
ca46bad2-eb8c-4a7f-bb45-97d67472a015
None
Preview
Name / File License Actions
NJPSC NJPSC 2019 Proceedings-pages-28-33.pdf (320 Kb)
Publication type
Article
Upload type
Publication
Title
Title Isolated Myanmar Speech Recognition via ANN
Language en_US
Publication date 2019-03
Authors
Hsan, Nan Phyu Phyu
Oo, Twe Ta
Description
Automatic Speech Recognition (ASR) is a popularand challenging area of research in human computerinteraction. This paper presents an isolated Myanmarspeech recognition system that is speaker dependentas well as speaker independent and developed byusing Artificial Neural Network techniques. In thissystem, the Mel Frequency Cepstral Coefficientsextracted from the manually preprocessed words areconsidered as the features to acoustically identify thespeeches. Those features are then used to train andtest the Backpropagation neural network model. Thissystem uses a database of 2800 utterances (names ofthe cities in Myanmar) by 10 talkers (4 males and 6females), from which 2400 utterances are used fortraining and 400 are used for testing and recognition.As per the experimental results, the proposed systemachieved the recognition rate of about 93.5% forknown speakers (i.e., speaker dependent) and 76.5%for unknown speakers (i.e., speaker independent).
Keywords
ASR, isolated speech, ANN, MFCC
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/2292
Journal articles
University of Computer Studies, Yangon
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:33:09.775804
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL