Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "f5899f1d-4658-433e-96a1-bb8e55490c3f"}, "_deposit": {"id": "4312", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4312"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4312", "sets": ["1597824322519", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "The Comparison of Classification Methods on Software Defect Data Sets", "subitem_1551255648112": "en_US"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Nowadays, it is difficult for us to imagine a life without devices that iscontrolled by software. Software quality has become the main concern during thesoftware development. Software quality is a field of study and practice that describesthe desirable attributes of software products. Software quality prediction is a processof utilizing software metrics such as code-level measurements and defect data to buildclassification models that are able to estimate the quality of program modules. Themajor problem that affects the quality of datasets is high dimensionality and classimbalanced. A more useful and efficient mechanism is k Nearest Neighbor method,where Nearest Neighbor classify classes of testing dataset based on k nearest neighborof training dataset. Another mechanism is Class Based Weighted k Nearest Neighborwith BINER Algorithm for classifying classes of testing dataset. By using BINERAlgorithm, it narrows down the training dataset range instead of whole trainingdataset that has the maximum likelihood of occurrence and then CBW k-NN classifiesclasses of testing dataset based on this range. This thesis is the comparison of twoclassification methods by classifying classes of testing dataset focuses on NASAMDP (PC1, CM1 and JM1) datasets. The comparison results of two methods based onAccuracy, Reliability, Mean Absolute Error and Root Mean Squared Error."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-09-23"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "HninYiSan.pdf", "filesize": [{"value": "2558 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2558000.0, "url": {"url": "https://meral.edu.mm/record/4312/files/HninYiSan.pdf"}, "version_id": "afaa3fbe-fa5d-400c-a4ea-ae2cc140325d"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "University of Computer Studies, Yangon", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "San, Hnin Yi"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Thesis"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2018-12"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2251"}, "item_title": "The Comparison of Classification Methods on Software Defect Data Sets", "item_type_id": "21", "owner": "1", "path": ["1597824322519"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004312", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-09-23"}, "publish_date": "2019-09-23", "publish_status": "0", "recid": "4312", "relation": {}, "relation_version_is_last": true, "title": ["The Comparison of Classification Methods on Software Defect Data Sets"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Ph.D/Master Theses & Dissertations

The Comparison of Classification Methods on Software Defect Data Sets

http://hdl.handle.net/20.500.12678/0000004312
http://hdl.handle.net/20.500.12678/0000004312
fde679c4-d92d-4962-897b-c2424bf3b549
f5899f1d-4658-433e-96a1-bb8e55490c3f
None
Preview
Name / File License Actions
HninYiSan.pdf HninYiSan.pdf (2558 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:29:59.992785
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL