Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "94869cd3-a4b3-46eb-bfdd-09ca7ee7b623"}, "_deposit": {"id": "4263", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4263"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4263", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Clustering Spatial Data using DBSCAN (Density-Based Spatial Clustering of Applications with Noise)", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Clustering algorithms are data attractive for the last class identification in spatial databases. This system presents the new clustering algorithm DBSCAN (Density-Based Spatial Clustering of Applications  with Noise). DBSCAN is a density-based clustering algorithm, grows regions with sufficiently high density into clusters and discovers of arbitrary shape and size in spatial databases. DBSCAN defines a cluster as a maximum set of density-connected objects. Every object not contained in any cluster is considered to be noise. DBSCAN is efficient even for large spatial databases. This system performs the effectiveness and efficiency of  DBSCAN using spatial databases. The results demonstrate that DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm CLARANS (Clustering Large Applications based on RANdomized Search) and the run time comparison of DBSCAN and CLARANS on these databases in terms of efficiency."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-08-13"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Clustering Spatial Data using DBSCAN.pdf", "filesize": [{"value": "6 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 6000.0, "url": {"url": "https://meral.edu.mm/record/4263/files/Clustering Spatial Data using DBSCAN.pdf"}, "version_id": "84202bdf-1582-430d-bbe5-2fad89adf134"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Third Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Yan, Phyo Wai"}, {"subitem_authors_fullname": "Thida, Aye"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2009-08-03"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/2115"}, "item_title": "Clustering Spatial Data using DBSCAN (Density-Based Spatial Clustering of Applications with Noise)", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004263", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-08-13"}, "publish_date": "2019-08-13", "publish_status": "0", "recid": "4263", "relation": {}, "relation_version_is_last": true, "title": ["Clustering Spatial Data using DBSCAN (Density-Based Spatial Clustering of Applications with Noise)"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Clustering Spatial Data using DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

http://hdl.handle.net/20.500.12678/0000004263
http://hdl.handle.net/20.500.12678/0000004263
224decd3-30e5-4722-88a2-8a3111864724
94869cd3-a4b3-46eb-bfdd-09ca7ee7b623
None
Preview
Name / File License Actions
Clustering Clustering Spatial Data using DBSCAN.pdf (6 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:25:50.357061
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL