MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "4fe9020e-b215-45b0-8aa4-f2e02f9b62bc"}, "_deposit": {"id": "4239", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4239"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4239", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Efficient Combined Index Structure for K-Nearest Neighbours Keyword Search on Spatial Database", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Spatial keyword search on spatial database hasbeen well studied for years due to its importance tocommercial search engines.Specially, a spatialkeyword query takes a user location and user-suppliedkeywords as arguments and returns object that isnearest k objects from user current location andtextually relevant to the user required keyword. Geotextualindex play an important role in spatial keywordquerying. This paper proposes the efficient combinedindex structure for K-Nearest Neighbours KeywordSearch on Spatial Database. That combine K-d treeand inverted file for nearest neighbor keyword querywhich is based on the most spatial and textualrelevance to query point and required keyword. It cansearch required k results with minimum IO costs andCPU costs. The k-results are ranked according to thedistance or keyword. The own dataset is created forYangon (Myanmar) region which contains latitude,longitude, name, description and category type of eachobject."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Combination Scheme"}, {"interim": "Spatial Keyword Queries"}, {"interim": "Problem Statement"}, {"interim": "Propoosed Index"}, {"interim": "K-NN Keyword Search Algorithm"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "6.Efficient Combined Index Structure for K-Nearest Neighbour.pdf", "filesize": [{"value": "393 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 393000.0, "url": {"url": "https://meral.edu.mm/record/4239/files/6.Efficient Combined Index Structure for K-Nearest Neighbour.pdf"}, "version_id": "2c67d878-4c79-4e91-a768-555628776f0b"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Thirteenth International Conferences on Computer Applications(ICCA 2015)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aung, Su Nandar"}, {"subitem_authors_fullname": "Sein, Myint Myint"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2015-02-05"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/198"}, "item_title": "Efficient Combined Index Structure for K-Nearest Neighbours Keyword Search on Spatial Database", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004239", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "4239", "relation": {}, "relation_version_is_last": true, "title": ["Efficient Combined Index Structure for K-Nearest Neighbours Keyword Search on Spatial Database"], "weko_shared_id": -1}
Efficient Combined Index Structure for K-Nearest Neighbours Keyword Search on Spatial Database
http://hdl.handle.net/20.500.12678/0000004239
http://hdl.handle.net/20.500.12678/0000004239a2b80c0e-3c93-4551-bb1e-d5fe878b9aed
4fe9020e-b215-45b0-8aa4-f2e02f9b62bc
Name / File | License | Actions |
---|---|---|
6.Efficient Combined Index Structure for K-Nearest Neighbour.pdf (393 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Efficient Combined Index Structure for K-Nearest Neighbours Keyword Search on Spatial Database | |||||
Language | en | |||||
Publication date | 2015-02-05 | |||||
Authors | ||||||
Aung, Su Nandar | ||||||
Sein, Myint Myint | ||||||
Description | ||||||
Spatial keyword search on spatial database hasbeen well studied for years due to its importance tocommercial search engines.Specially, a spatialkeyword query takes a user location and user-suppliedkeywords as arguments and returns object that isnearest k objects from user current location andtextually relevant to the user required keyword. Geotextualindex play an important role in spatial keywordquerying. This paper proposes the efficient combinedindex structure for K-Nearest Neighbours KeywordSearch on Spatial Database. That combine K-d treeand inverted file for nearest neighbor keyword querywhich is based on the most spatial and textualrelevance to query point and required keyword. It cansearch required k results with minimum IO costs andCPU costs. The k-results are ranked according to thedistance or keyword. The own dataset is created forYangon (Myanmar) region which contains latitude,longitude, name, description and category type of eachobject. | ||||||
Keywords | ||||||
Combination Scheme, Spatial Keyword Queries, Problem Statement, Propoosed Index, K-NN Keyword Search Algorithm | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/198 | |||||
Journal articles | ||||||
Thirteenth International Conferences on Computer Applications(ICCA 2015) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |