Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "4fe9020e-b215-45b0-8aa4-f2e02f9b62bc"}, "_deposit": {"id": "4239", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4239"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4239", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Efficient Combined Index Structure for K-Nearest Neighbours Keyword Search on Spatial Database", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Spatial keyword search on spatial database hasbeen well studied for years due to its importance tocommercial search engines.Specially, a spatialkeyword query takes a user location and user-suppliedkeywords as arguments and returns object that isnearest k objects from user current location andtextually relevant to the user required keyword. Geotextualindex play an important role in spatial keywordquerying. This paper proposes the efficient combinedindex structure for K-Nearest Neighbours KeywordSearch on Spatial Database. That combine K-d treeand inverted file for nearest neighbor keyword querywhich is based on the most spatial and textualrelevance to query point and required keyword. It cansearch required k results with minimum IO costs andCPU costs. The k-results are ranked according to thedistance or keyword. The own dataset is created forYangon (Myanmar) region which contains latitude,longitude, name, description and category type of eachobject."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Combination Scheme"}, {"interim": "Spatial Keyword Queries"}, {"interim": "Problem Statement"}, {"interim": "Propoosed Index"}, {"interim": "K-NN Keyword Search Algorithm"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "6.Efficient Combined Index Structure for K-Nearest Neighbour.pdf", "filesize": [{"value": "393 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 393000.0, "url": {"url": "https://meral.edu.mm/record/4239/files/6.Efficient Combined Index Structure for K-Nearest Neighbour.pdf"}, "version_id": "2c67d878-4c79-4e91-a768-555628776f0b"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Thirteenth International Conferences on Computer Applications(ICCA 2015)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aung, Su Nandar"}, {"subitem_authors_fullname": "Sein, Myint Myint"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2015-02-05"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/198"}, "item_title": "Efficient Combined Index Structure for K-Nearest Neighbours Keyword Search on Spatial Database", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004239", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "4239", "relation": {}, "relation_version_is_last": true, "title": ["Efficient Combined Index Structure for K-Nearest Neighbours Keyword Search on Spatial Database"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Efficient Combined Index Structure for K-Nearest Neighbours Keyword Search on Spatial Database

http://hdl.handle.net/20.500.12678/0000004239
http://hdl.handle.net/20.500.12678/0000004239
a2b80c0e-3c93-4551-bb1e-d5fe878b9aed
4fe9020e-b215-45b0-8aa4-f2e02f9b62bc
None
Preview
Name / File License Actions
6.Efficient 6.Efficient Combined Index Structure for K-Nearest Neighbour.pdf (393 Kb)
Publication type
Article
Upload type
Publication
Title
Title Efficient Combined Index Structure for K-Nearest Neighbours Keyword Search on Spatial Database
Language en
Publication date 2015-02-05
Authors
Aung, Su Nandar
Sein, Myint Myint
Description
Spatial keyword search on spatial database hasbeen well studied for years due to its importance tocommercial search engines.Specially, a spatialkeyword query takes a user location and user-suppliedkeywords as arguments and returns object that isnearest k objects from user current location andtextually relevant to the user required keyword. Geotextualindex play an important role in spatial keywordquerying. This paper proposes the efficient combinedindex structure for K-Nearest Neighbours KeywordSearch on Spatial Database. That combine K-d treeand inverted file for nearest neighbor keyword querywhich is based on the most spatial and textualrelevance to query point and required keyword. It cansearch required k results with minimum IO costs andCPU costs. The k-results are ranked according to thedistance or keyword. The own dataset is created forYangon (Myanmar) region which contains latitude,longitude, name, description and category type of eachobject.
Keywords
Combination Scheme, Spatial Keyword Queries, Problem Statement, Propoosed Index, K-NN Keyword Search Algorithm
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/198
Journal articles
Thirteenth International Conferences on Computer Applications(ICCA 2015)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 14:23:44.510664
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL