MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "ab996f08-1907-4688-ac28-33de2c96ccb8"}, "_deposit": {"id": "4026", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4026"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4026", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "USING SUPPORT VECTOR MACHINE FOR MUSIC GENRE CLASSIFICATION", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Musical genres are commonly used to structure the increasing amounts of music available in digital form on the Web and are important for music/audio information retrieval. Genre categorization for music/audio has traditionally been performed manually. Automatic music genre classification is very useful for music indexing and retrieval. In this paper, we present an efficient and effective automatic music genre classification approach. Music genre classification is processed in two parts, feature extraction and classification. A set of feature is extracted and used to characterize music content. A multilayer classifier based on support vector machine is applied to music genre class-ification. Support vector machines are used to obtain the optimal class boundaries between different genres of music by learning from training data .The classification results of the proposed feature set has 93% accuracy rate improvement in the multilayer SVM."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Music genre classification"}, {"interim": "automatic music genre classification approach"}, {"interim": "Support Vector Machine"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-08-05"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "USING SUPPORT VECTOR MACHINE FOR MUSIC GENRE CLASSIFICATION.pdf", "filesize": [{"value": "214 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 214000.0, "url": {"url": "https://meral.edu.mm/record/4026/files/USING SUPPORT VECTOR MACHINE FOR MUSIC GENRE CLASSIFICATION.pdf"}, "version_id": "6b704d72-1ea5-4d11-9b20-f7fc3fdfd74a"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Second Conference on Applied Information and Communication Technology and The Technical Workshop(2009)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Kyaw, Lett Yi"}, {"subitem_authors_fullname": "Renu"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2009-09-29"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1736"}, "item_title": "USING SUPPORT VECTOR MACHINE FOR MUSIC GENRE CLASSIFICATION", "item_type_id": "21", "owner": "1", "path": ["1597824175385"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004026", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-08-05"}, "publish_date": "2019-08-05", "publish_status": "0", "recid": "4026", "relation": {}, "relation_version_is_last": true, "title": ["USING SUPPORT VECTOR MACHINE FOR MUSIC GENRE CLASSIFICATION"], "weko_shared_id": -1}
USING SUPPORT VECTOR MACHINE FOR MUSIC GENRE CLASSIFICATION
http://hdl.handle.net/20.500.12678/0000004026
http://hdl.handle.net/20.500.12678/00000040261c22ba31-e26a-4238-88a8-2ff31685cb16
ab996f08-1907-4688-ac28-33de2c96ccb8
Name / File | License | Actions |
---|---|---|
![]() |
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | USING SUPPORT VECTOR MACHINE FOR MUSIC GENRE CLASSIFICATION | |||||
Language | en | |||||
Publication date | 2009-09-29 | |||||
Authors | ||||||
Kyaw, Lett Yi | ||||||
Renu | ||||||
Description | ||||||
Musical genres are commonly used to structure the increasing amounts of music available in digital form on the Web and are important for music/audio information retrieval. Genre categorization for music/audio has traditionally been performed manually. Automatic music genre classification is very useful for music indexing and retrieval. In this paper, we present an efficient and effective automatic music genre classification approach. Music genre classification is processed in two parts, feature extraction and classification. A set of feature is extracted and used to characterize music content. A multilayer classifier based on support vector machine is applied to music genre class-ification. Support vector machines are used to obtain the optimal class boundaries between different genres of music by learning from training data .The classification results of the proposed feature set has 93% accuracy rate improvement in the multilayer SVM. | ||||||
Keywords | ||||||
Music genre classification, automatic music genre classification approach, Support Vector Machine | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/1736 | |||||
Journal articles | ||||||
Second Conference on Applied Information and Communication Technology and The Technical Workshop(2009) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |