MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "c94635e3-649c-4fc8-b288-1cba97a45357"}, "_deposit": {"id": "4009", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4009"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4009", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Suggesting Mode of Delivery by Using Iterative Dichotomiser3 (ID3) Algorithm", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Data mining is a process that has a variety of data analysis tools to discover patterns and relationships in data that may be used to make valid predictions. Classification is the process of finding a set of models that describe and distinguish data classes or concepts , for the purpose of being able to use the model to predict the class of objects whose class label is unknown. Classification of complex measurements is used in many application domain. This system intended to implement a suggesting system for OG (Obetetrics Gyanaecology) knowledge in predicting mode of delivery (method of labour process) by using ID3 classification method. Patient’s 4 CTG outline information , patient’s age , patient’s gestation week , condition of AF (Amniotic Fluid) guess , condition of fetal distress guess are used for predicting mode of delivery. Depending on these 8 attributes values , the system can generate two categories of mode of delivery (namely :Normal Vaginal Delivery [NVD] and Lower Segment Caesarean Section [LSCS]) for new born baby. This system use hold-out accuracy method to approve the system accuracy."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "data mining"}, {"interim": "classification"}, {"interim": "decision tree"}, {"interim": "ID3 algorithm"}, {"interim": "mode of delivery"}, {"interim": "CTG"}, {"interim": "hold-out accuracy method"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-08-05"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "55118.pdf", "filesize": [{"value": "788 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 788000.0, "url": {"url": "https://meral.edu.mm/record/4009/files/55118.pdf"}, "version_id": "7ba80dc4-5954-417a-b2b0-3bbd17e114ca"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aye, Yin Mon"}, {"subitem_authors_fullname": "Nwe, Khine Moe"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2009-12-30"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1720"}, "item_title": "Suggesting Mode of Delivery by Using Iterative Dichotomiser3 (ID3) Algorithm", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004009", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-08-05"}, "publish_date": "2019-08-05", "publish_status": "0", "recid": "4009", "relation": {}, "relation_version_is_last": true, "title": ["Suggesting Mode of Delivery by Using Iterative Dichotomiser3 (ID3) Algorithm"], "weko_shared_id": -1}
Suggesting Mode of Delivery by Using Iterative Dichotomiser3 (ID3) Algorithm
http://hdl.handle.net/20.500.12678/0000004009
http://hdl.handle.net/20.500.12678/0000004009f83f2821-fd75-464c-877e-8cc984d94308
c94635e3-649c-4fc8-b288-1cba97a45357
Name / File | License | Actions |
---|---|---|
55118.pdf (788 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Suggesting Mode of Delivery by Using Iterative Dichotomiser3 (ID3) Algorithm | |||||
Language | en | |||||
Publication date | 2009-12-30 | |||||
Authors | ||||||
Aye, Yin Mon | ||||||
Nwe, Khine Moe | ||||||
Description | ||||||
Data mining is a process that has a variety of data analysis tools to discover patterns and relationships in data that may be used to make valid predictions. Classification is the process of finding a set of models that describe and distinguish data classes or concepts , for the purpose of being able to use the model to predict the class of objects whose class label is unknown. Classification of complex measurements is used in many application domain. This system intended to implement a suggesting system for OG (Obetetrics Gyanaecology) knowledge in predicting mode of delivery (method of labour process) by using ID3 classification method. Patient’s 4 CTG outline information , patient’s age , patient’s gestation week , condition of AF (Amniotic Fluid) guess , condition of fetal distress guess are used for predicting mode of delivery. Depending on these 8 attributes values , the system can generate two categories of mode of delivery (namely :Normal Vaginal Delivery [NVD] and Lower Segment Caesarean Section [LSCS]) for new born baby. This system use hold-out accuracy method to approve the system accuracy. | ||||||
Keywords | ||||||
data mining, classification, decision tree, ID3 algorithm, mode of delivery, CTG, hold-out accuracy method | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/1720 | |||||
Journal articles | ||||||
Fourth Local Conference on Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |