Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "452d2332-233c-4409-a928-125664350d42"}, "_deposit": {"id": "4001", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "4001"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/4001", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Prediction of Significant Heart Attack Patterns Using Clustering Algorithm", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "This system presents an efficient approachfor discovering significant patterns from the heartdisease database for heart attack prediction. Theheart disease data warehouse is clustered using Kmeansclustering algorithm to extract related data.The primary intent of the system is to design anddevelop an efficient approach for extractingpatterns, which are significant to heart attack, fromthe heart disease database. The diagnosis ofdiseases is a significant and tedious task inmedicine. The detection of heart disease fromvarious factors or symptoms is a multi-layeredissue which is not free from false presumptionsoften accompanied by unpredictable effects. Thusthe effort to utilize knowledge and experience ofnumerous specialists and clinical screening data ofpatients collected in databases to facilitate thediagnosis process is considered a valuable option.The proposed system aims to utilize the data miningtechniques: clustering and frequent pattern mining."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Clustering Algorithm"}, {"interim": "Heart Attack"}, {"interim": "Frequent pattern mining"}, {"interim": "Data Mining"}, {"interim": "Disease Diagnosis"}, {"interim": "Heart Disease"}, {"interim": "Pre-processing"}, {"interim": "Frequent Patterns"}, {"interim": "MAFIA (MAximal Frequent Itemset Algorithm)"}, {"interim": "Clustering"}, {"interim": "K-Means"}, {"interim": "Significant Patterns"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-08-04"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "55108.pdf", "filesize": [{"value": "906 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 906000.0, "url": {"url": "https://meral.edu.mm/record/4001/files/55108.pdf"}, "version_id": "f93d8cee-893f-4831-a203-11d2797ce740"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Han, Aye Mya"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2009-12-30"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1713"}, "item_title": "Prediction of Significant Heart Attack Patterns Using Clustering Algorithm", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000004001", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-08-04"}, "publish_date": "2019-08-04", "publish_status": "0", "recid": "4001", "relation": {}, "relation_version_is_last": true, "title": ["Prediction of Significant Heart Attack Patterns Using Clustering Algorithm"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Prediction of Significant Heart Attack Patterns Using Clustering Algorithm

http://hdl.handle.net/20.500.12678/0000004001
http://hdl.handle.net/20.500.12678/0000004001
41956da3-5ee8-4a1c-8b9e-c7ab5e7bed2c
452d2332-233c-4409-a928-125664350d42
None
Preview
Name / File License Actions
55108.pdf 55108.pdf (906 Kb)
Publication type
Article
Upload type
Publication
Title
Title Prediction of Significant Heart Attack Patterns Using Clustering Algorithm
Language en
Publication date 2009-12-30
Authors
Han, Aye Mya
Description
This system presents an efficient approachfor discovering significant patterns from the heartdisease database for heart attack prediction. Theheart disease data warehouse is clustered using Kmeansclustering algorithm to extract related data.The primary intent of the system is to design anddevelop an efficient approach for extractingpatterns, which are significant to heart attack, fromthe heart disease database. The diagnosis ofdiseases is a significant and tedious task inmedicine. The detection of heart disease fromvarious factors or symptoms is a multi-layeredissue which is not free from false presumptionsoften accompanied by unpredictable effects. Thusthe effort to utilize knowledge and experience ofnumerous specialists and clinical screening data ofpatients collected in databases to facilitate thediagnosis process is considered a valuable option.The proposed system aims to utilize the data miningtechniques: clustering and frequent pattern mining.
Keywords
Clustering Algorithm, Heart Attack, Frequent pattern mining, Data Mining, Disease Diagnosis, Heart Disease, Pre-processing, Frequent Patterns, MAFIA (MAximal Frequent Itemset Algorithm), Clustering, K-Means, Significant Patterns
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/1713
Journal articles
Fourth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 13:53:17.054468
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL