Index Link

  • RootNode

Item

{"_buckets": {"deposit": "311cd7f1-43da-414c-86fd-f4d79cc86e85"}, "_deposit": {"id": "3850", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3850"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3850", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Outlier Detection on Sale Transactions Using Box Plot", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Outlier detection is an important task in data mining activities and has much attention in both research and application. A value that lies outside which is much smaller or larger than most of the other value in a set of data, this value is called outlier. Most databases include a certain amount of exceptional values, generally termed as outlier. Extremes values tend to be encountered whenever researchers attempt to measure and characterize real world phenomena. Therefore, researchers in all fields are faced with the problem of extreme observations. An observation that is usually large or small relative to the data values is called univariate outlier. In this paper, we present an approach to automating the process of detection univariate outliers. The process is based on graphical display method of construction box plot. In this paper we used outlier labeling method of box plot to detect outlier in electronic items sale database."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Outliers analysis"}, {"interim": "univariate outlier"}, {"interim": "data mining"}, {"interim": "Box plot"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-08-01"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "55010.pdf", "filesize": [{"value": "238 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 238000.0, "url": {"url": "https://meral.edu.mm/record/3850/files/55010.pdf"}, "version_id": "356b0274-ff8d-4297-964a-6ebd924fed1f"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Hlaing, Wint Wah"}, {"subitem_authors_fullname": "Khin, Tar Tar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2009-12-30"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1575"}, "item_title": "Outlier Detection on Sale Transactions Using Box Plot", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003850", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-08-01"}, "publish_date": "2019-08-01", "publish_status": "0", "recid": "3850", "relation": {}, "relation_version_is_last": true, "title": ["Outlier Detection on Sale Transactions Using Box Plot"], "weko_shared_id": -1}

Outlier Detection on Sale Transactions Using Box Plot

http://hdl.handle.net/20.500.12678/0000003850
43be5f48-85ed-43d2-929e-38817f0cfe27
311cd7f1-43da-414c-86fd-f4d79cc86e85
None
Name / File License Actions
55010.pdf 55010.pdf (238 Kb)
Publication type
Article
Upload type
Publication
Title
Title Outlier Detection on Sale Transactions Using Box Plot
Language en
Publication date 2009-12-30
Authors
Hlaing, Wint Wah
Khin, Tar Tar
Description
Outlier detection is an important task in data mining activities and has much attention in both research and application. A value that lies outside which is much smaller or larger than most of the other value in a set of data, this value is called outlier. Most databases include a certain amount of exceptional values, generally termed as outlier. Extremes values tend to be encountered whenever researchers attempt to measure and characterize real world phenomena. Therefore, researchers in all fields are faced with the problem of extreme observations. An observation that is usually large or small relative to the data values is called univariate outlier. In this paper, we present an approach to automating the process of detection univariate outliers. The process is based on graphical display method of construction box plot. In this paper we used outlier labeling method of box plot to detect outlier in electronic items sale database.
Keywords
Outliers analysis, univariate outlier, data mining, Box plot
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/1575
Journal articles
Fourth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats