MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "e60199aa-c77f-4b13-9f7f-a29b058af90c"}, "_deposit": {"id": "3813", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3813"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3813", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Trading Department Oriented Web Classification Using Naïve Bayes", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Web page classification is significantly different from traditional text classification because of the presence of some additional information, provided by the HTML structure and by the presence of hyperlinks. Web classification is based on a text classification method known as Naïve Bayes. Naïve Bayes is often used in text classification applications and experiments because of its simplicity and effectiveness. In text and web page classification, Bayesian prior probabilities are usually based on term of word frequencies and term counts within a page and its linked pages. This paper presents Naïve Bayes method to classify Web pages by using keywords and defines the respective sections or departments for trading company. This paper is focused on web page representation by text content."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Naïve Bayes"}, {"interim": "Web page classification"}, {"interim": "text classification"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-31"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "54131.pdf", "filesize": [{"value": "279 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 279000.0, "url": {"url": "https://meral.edu.mm/record/3813/files/54131.pdf"}, "version_id": "cdcd1711-77b4-4c68-b813-2483175b899a"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Htun, Nilar"}, {"subitem_authors_fullname": "Htun, Moe Sanda"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2009-12-30"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1541"}, "item_title": "Trading Department Oriented Web Classification Using Naïve Bayes", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003813", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-31"}, "publish_date": "2019-07-31", "publish_status": "0", "recid": "3813", "relation": {}, "relation_version_is_last": true, "title": ["Trading Department Oriented Web Classification Using Naïve Bayes"], "weko_shared_id": -1}
Trading Department Oriented Web Classification Using Naïve Bayes
http://hdl.handle.net/20.500.12678/0000003813
http://hdl.handle.net/20.500.12678/000000381358a7c463-f614-40bb-a87f-5db772c09a5c
e60199aa-c77f-4b13-9f7f-a29b058af90c
Name / File | License | Actions |
---|---|---|
54131.pdf (279 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Trading Department Oriented Web Classification Using Naïve Bayes | |||||
Language | en | |||||
Publication date | 2009-12-30 | |||||
Authors | ||||||
Htun, Nilar | ||||||
Htun, Moe Sanda | ||||||
Description | ||||||
Web page classification is significantly different from traditional text classification because of the presence of some additional information, provided by the HTML structure and by the presence of hyperlinks. Web classification is based on a text classification method known as Naïve Bayes. Naïve Bayes is often used in text classification applications and experiments because of its simplicity and effectiveness. In text and web page classification, Bayesian prior probabilities are usually based on term of word frequencies and term counts within a page and its linked pages. This paper presents Naïve Bayes method to classify Web pages by using keywords and defines the respective sections or departments for trading company. This paper is focused on web page representation by text content. | ||||||
Keywords | ||||||
Naïve Bayes, Web page classification, text classification | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/1541 | |||||
Journal articles | ||||||
Fourth Local Conference on Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |