MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "a76f5848-7e7f-479f-80bc-b57f83ce66a9"}, "_deposit": {"id": "3762", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3762"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3762", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Malaria Diagnosis System by Using ID3 Classification Algorithm", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Decision Tree algorithms are the most popular algorithms for classification in data mining field. The main goal of classification is prediction of the categorical labels (classes). In this system, ID3 algorithm is used to predict infection of malaria disease on patients by selecting training data (patients’ medical records), constructing decision model and adjust the model based on testing data (part of patients’ medical records). The constructed model is represented in the form of decision tree and classification rules. The choice of suitable model to predict malaria infection on patient can decide against the correctness of model (classifier accuracy). To get the best classifier accuracy, this system permits selecting no of records to train the system and remove unnecessary braches of tree."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Classification Rule"}, {"interim": "Classifier"}, {"interim": "Classes"}, {"interim": "Data Mining"}, {"interim": "Decision Tree"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-31"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "54072.pdf", "filesize": [{"value": "825 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 825000.0, "url": {"url": "https://meral.edu.mm/record/3762/files/54072.pdf"}, "version_id": "5dd7feaa-a938-4c18-9264-e362d5a38b19"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Thuai, Khaing Mar"}, {"subitem_authors_fullname": "Thant, Moe"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2009-12-30"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1495"}, "item_title": "Malaria Diagnosis System by Using ID3 Classification Algorithm", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003762", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-31"}, "publish_date": "2019-07-31", "publish_status": "0", "recid": "3762", "relation": {}, "relation_version_is_last": true, "title": ["Malaria Diagnosis System by Using ID3 Classification Algorithm"], "weko_shared_id": -1}
Malaria Diagnosis System by Using ID3 Classification Algorithm
http://hdl.handle.net/20.500.12678/0000003762
http://hdl.handle.net/20.500.12678/0000003762e461ec7d-9670-49ef-9f4c-1bf0ba1c0147
a76f5848-7e7f-479f-80bc-b57f83ce66a9
Name / File | License | Actions |
---|---|---|
![]() |
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Malaria Diagnosis System by Using ID3 Classification Algorithm | |||||
Language | en | |||||
Publication date | 2009-12-30 | |||||
Authors | ||||||
Thuai, Khaing Mar | ||||||
Thant, Moe | ||||||
Description | ||||||
Decision Tree algorithms are the most popular algorithms for classification in data mining field. The main goal of classification is prediction of the categorical labels (classes). In this system, ID3 algorithm is used to predict infection of malaria disease on patients by selecting training data (patients’ medical records), constructing decision model and adjust the model based on testing data (part of patients’ medical records). The constructed model is represented in the form of decision tree and classification rules. The choice of suitable model to predict malaria infection on patient can decide against the correctness of model (classifier accuracy). To get the best classifier accuracy, this system permits selecting no of records to train the system and remove unnecessary braches of tree. | ||||||
Keywords | ||||||
Classification Rule, Classifier, Classes, Data Mining, Decision Tree | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/1495 | |||||
Journal articles | ||||||
Fourth Local Conference on Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |