Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "f2e2d5ce-651b-4932-a432-e2c2be2682c2"}, "_deposit": {"id": "3674", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3674"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3674", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Quantitative Association Rules Mining for Business Transactional Data", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "The explosive growth in data and database has generated a need for techniques and tools that can transform the processed data into useful information and knowledge that improves marketing strategy. Association rules mining is finding frequent patterns, associations, correlations, or causal structures among item sets in transaction databases, relational databases, and other information repositories. The relational tables that stored the transactions have richer attribute types such as quantitative and categorical attribute. Thus the development of tools that can extract useful information from this large database is greatly demand. This paper discusses the quantitative association rules mining from business transactional database that store the textile store. We introduce the quantitative association rules mining using with the direct application using on a real-life dataset."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Association Rules Mining"}, {"interim": "quantitative and category attributes"}, {"interim": "quantitative association rules mining"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-29"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "3670.pdf", "filesize": [{"value": "474 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 474000.0, "url": {"url": "https://meral.edu.mm/record/3674/files/3670.pdf"}, "version_id": "6790b43b-88c4-4c8f-ada3-afba3a01702e"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fourth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Nyaung, Dim En"}, {"subitem_authors_fullname": "Zaw, Wint Thida"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2009-12-30"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1415"}, "item_title": "Quantitative Association Rules Mining for Business Transactional Data", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003674", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-29"}, "publish_date": "2019-07-29", "publish_status": "0", "recid": "3674", "relation": {}, "relation_version_is_last": true, "title": ["Quantitative Association Rules Mining for Business Transactional Data"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Quantitative Association Rules Mining for Business Transactional Data

http://hdl.handle.net/20.500.12678/0000003674
http://hdl.handle.net/20.500.12678/0000003674
124ed0c9-3a2b-4544-aee9-3f51fb075545
f2e2d5ce-651b-4932-a432-e2c2be2682c2
None
Preview
Name / File License Actions
3670.pdf 3670.pdf (474 Kb)
Publication type
Article
Upload type
Publication
Title
Title Quantitative Association Rules Mining for Business Transactional Data
Language en
Publication date 2009-12-30
Authors
Nyaung, Dim En
Zaw, Wint Thida
Description
The explosive growth in data and database has generated a need for techniques and tools that can transform the processed data into useful information and knowledge that improves marketing strategy. Association rules mining is finding frequent patterns, associations, correlations, or causal structures among item sets in transaction databases, relational databases, and other information repositories. The relational tables that stored the transactions have richer attribute types such as quantitative and categorical attribute. Thus the development of tools that can extract useful information from this large database is greatly demand. This paper discusses the quantitative association rules mining from business transactional database that store the textile store. We introduce the quantitative association rules mining using with the direct application using on a real-life dataset.
Keywords
Association Rules Mining, quantitative and category attributes, quantitative association rules mining
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/1415
Journal articles
Fourth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 13:16:42.592154
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL