Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "b8f55cc6-e57b-4166-9bc5-081e12d8fc96"}, "_deposit": {"id": "3647", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3647"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3647", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Training Neuarl Network with Partical Swarm Optimization", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Feed-forward networks are one of the most used neural networks in various domains because of their universal approximation capability. One of the popular algorithms for training multilayer feed-forward network is back-propagation which uses two phase namely feed-forward and bacl-propagate to learn the weight in the network. The main disadvantage of the back-propagation algorithm is its convergence rate is slow at it always being trapped in local minima.Particle swarm optimization (PSO) is a kind of Swarm Intelligence algorithm that has many successful applications in optimization. Unlike back-propagation which used local search, PSO use global search technique. It is an adaptive algorithm based on a social psychological metaphor; a population of individual adats by returning stochastically toward previously successful regions in the search space, and is influence by the successes of their topological neighbors. This paper presents the design, implementation and result for training neural network and result for training neural network with PSO and BP."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-26"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Training Neuarl Network with Partical Swarm Optimization.pdf", "filesize": [{"value": "6 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 6000.0, "url": {"url": "https://meral.edu.mm/record/3647/files/Training Neuarl Network with Partical Swarm Optimization.pdf"}, "version_id": "9efd9c7b-34a4-4b28-b4a9-438636ae79e7"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Sixth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Moe, Khin Thant Zin"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2011-12-29"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1379"}, "item_title": "Training Neuarl Network with Partical Swarm Optimization", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003647", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-26"}, "publish_date": "2019-07-26", "publish_status": "0", "recid": "3647", "relation": {}, "relation_version_is_last": true, "title": ["Training Neuarl Network with Partical Swarm Optimization"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Training Neuarl Network with Partical Swarm Optimization

http://hdl.handle.net/20.500.12678/0000003647
http://hdl.handle.net/20.500.12678/0000003647
6c7cec74-458e-4ab2-802e-1299f9ccd8c9
b8f55cc6-e57b-4166-9bc5-081e12d8fc96
None
Preview
Name / File License Actions
Training Training Neuarl Network with Partical Swarm Optimization.pdf (6 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 13:14:21.392341
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL