Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "39ce6397-af88-47fe-9070-51286a5b0d5c"}, "_deposit": {"id": "3623", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3623"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3623", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Acomparative study of K-Means and KMIX Clustering methods", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Clustering is the processof grouping the similar objects into the same group and produce characteristic for each cluster. Partition-based clustering algorithms are simple to implement. K-Means is one of the partition based clustering methods but it only work well on conditions include categorical data like medical fields. K-Means clustering need to transform categorical value to appropriate numeric form. KMIX clustering use simple matching dissimilarity measure for categorical value and replace mode instead of using mean for center vector. This system implements K-Means and KMIX algorithms on Zoo Small data set and Heart disease data set from UCI Machine Learning Repository. And then the clustering performance of these two algorithms are compared. According to experimental results, KMIX clustering is effective on data domain containing mixed type of numerical and categorical attributes."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-26"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Acomparative study of K.pdf", "filesize": [{"value": "6 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 6000.0, "url": {"url": "https://meral.edu.mm/record/3623/files/Acomparative study of K.pdf"}, "version_id": "6733d227-1b05-46a1-bca6-f56709db51b3"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Sixth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Lwin, No No Saw"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2011-12-29"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1356"}, "item_title": "Acomparative study of K-Means and KMIX Clustering methods", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003623", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-26"}, "publish_date": "2019-07-26", "publish_status": "0", "recid": "3623", "relation": {}, "relation_version_is_last": true, "title": ["Acomparative study of K-Means and KMIX Clustering methods"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Acomparative study of K-Means and KMIX Clustering methods

http://hdl.handle.net/20.500.12678/0000003623
http://hdl.handle.net/20.500.12678/0000003623
a3c94b97-3e12-4b76-b22c-69820517edf6
39ce6397-af88-47fe-9070-51286a5b0d5c
None
Preview
Name / File License Actions
Acomparative Acomparative study of K.pdf (6 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 13:13:11.221853
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL