Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "094ec176-f462-476c-8b5f-1dbef98eccf8"}, "_deposit": {"id": "3622", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3622"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3622", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Web Document Clustering using Genetic Algorithm", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Clustering (or cluster analysis) is one of the main data analysis techniques and deals with the organization of a set of objects in a multidimensional space into cohesive groups, called clusters. Each cluster contains objects that are very similar to each other and very dissimilar to object in other cluster. Web page clustering is one of the major preprocessing step in web mining analysis. Clustering is also useful extracting salient features of related web document to automatically formulated queries and search for other similar document on the Web. Web page clustering faces with and many challenges due to the high dimensionality and due to heterogeneity nature of the web document. Efficient and scalable algorithm are need for web clustering. Genetic algorithm is a of the algorithm from evolutionary computing that can effectively search in the large search space by simulating the nature of evolution. This paper present the genetic algorithm for web page clustering that is scalable and efficient. Genetic algorithm with medoid representation was used because it provides shorter chromosome length and medoid based clustering is more tolerable to noisy data such as web document and employs a supervised features selection method for selection of appropriate features terms."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-26"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "Web Document Clustering using Genetic Algorithm.pdf", "filesize": [{"value": "7 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 7000.0, "url": {"url": "https://meral.edu.mm/record/3622/files/Web Document Clustering using Genetic Algorithm.pdf"}, "version_id": "fa63d747-d272-4511-acaa-e5c03b4937cc"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Sixth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Hein, Pyae Sandi"}, {"subitem_authors_fullname": "Khine, May Aye"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2011-12-29"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1355"}, "item_title": "Web Document Clustering using Genetic Algorithm", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003622", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-26"}, "publish_date": "2019-07-26", "publish_status": "0", "recid": "3622", "relation": {}, "relation_version_is_last": true, "title": ["Web Document Clustering using Genetic Algorithm"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Web Document Clustering using Genetic Algorithm

http://hdl.handle.net/20.500.12678/0000003622
http://hdl.handle.net/20.500.12678/0000003622
0b69398a-0662-4e24-b870-ee3ec529f18b
094ec176-f462-476c-8b5f-1dbef98eccf8
None
Preview
Name / File License Actions
Web Web Document Clustering using Genetic Algorithm.pdf (7 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 13:13:04.218471
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL