Index Link

  • RootNode

Item

{"_buckets": {"deposit": "681530df-195d-4f99-b097-781a76b45dee"}, "_deposit": {"id": "3616", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3616"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3616", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Effective Anomaly Detection Using Hidden-Semi Markov Model", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Anomaly detection studies the normal behaviorof the monitored system and then looks out for anydifference in it to detect anomalies or attacks. It is ableto detect new attacks as any attack is assumed to bedifferent from normal activity. It sometimes sets falsealarms because it erroneously classifies the normaluser behaviors as attacks.Different techniques havebeen used for anomaly detector generation.In thispaper, we would like to propose Hidden-Semi MarkovModel (HSMM) as it is introduced in intrusiondetection for several years. Based on this HSMM, analgorithm of anomaly detection is presented in thispaper, which computes the distance between theprocesses monitored by intrusion detection system andthe perfect normal processes. In this algorithm, we usethe average information entropy (AIE) of fixed-lengthobserved sequence as the anomaly detection metricbased on maximum entropy principle (MEP). Toimprove accuracy, the segmental K-means algorithm isapplied as training algorithm for the HSMM. Bycomparing the accurate rate with the experimentalresults of previous research, it shows that our methodcan perform a more accurate detection."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Intrusion detection"}, {"interim": "Anomaly detection"}, {"interim": "Hidden semi-Markov model (HSMM)"}, {"interim": "Maximum entropy principle (MEP)"}, {"interim": "Segmental K-means algorithm"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-03"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "3.Effective Anomaly Detection Using Hidden-Semi Markov Model.pdf", "filesize": [{"value": "78 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 78000.0, "url": {"url": "https://meral.edu.mm/record/3616/files/3.Effective Anomaly Detection Using Hidden-Semi Markov Model.pdf"}, "version_id": "1df02fcc-3c72-44d9-a455-522a49bff62a"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Thirteenth International Conferences on Computer Applications(ICCA 2015)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Wutyi, Khaing Shwe"}, {"subitem_authors_fullname": "Thwin, Mie Mie Su"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2015-02-05"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/135"}, "item_title": "Effective Anomaly Detection Using Hidden-Semi Markov Model", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003616", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-03"}, "publish_date": "2019-07-03", "publish_status": "0", "recid": "3616", "relation": {}, "relation_version_is_last": true, "title": ["Effective Anomaly Detection Using Hidden-Semi Markov Model"], "weko_shared_id": -1}

Effective Anomaly Detection Using Hidden-Semi Markov Model

http://hdl.handle.net/20.500.12678/0000003616
aeaf65a8-e79f-4999-ab43-292a4c5ba9e9
681530df-195d-4f99-b097-781a76b45dee
None
Name / File License Actions
3.Effective 3.Effective Anomaly Detection Using Hidden-Semi Markov Model.pdf (78 Kb)
Publication type
Article
Upload type
Publication
Title
Title Effective Anomaly Detection Using Hidden-Semi Markov Model
Language en
Publication date 2015-02-05
Authors
Wutyi, Khaing Shwe
Thwin, Mie Mie Su
Description
Anomaly detection studies the normal behaviorof the monitored system and then looks out for anydifference in it to detect anomalies or attacks. It is ableto detect new attacks as any attack is assumed to bedifferent from normal activity. It sometimes sets falsealarms because it erroneously classifies the normaluser behaviors as attacks.Different techniques havebeen used for anomaly detector generation.In thispaper, we would like to propose Hidden-Semi MarkovModel (HSMM) as it is introduced in intrusiondetection for several years. Based on this HSMM, analgorithm of anomaly detection is presented in thispaper, which computes the distance between theprocesses monitored by intrusion detection system andthe perfect normal processes. In this algorithm, we usethe average information entropy (AIE) of fixed-lengthobserved sequence as the anomaly detection metricbased on maximum entropy principle (MEP). Toimprove accuracy, the segmental K-means algorithm isapplied as training algorithm for the HSMM. Bycomparing the accurate rate with the experimentalresults of previous research, it shows that our methodcan perform a more accurate detection.
Keywords
Intrusion detection, Anomaly detection, Hidden semi-Markov model (HSMM), Maximum entropy principle (MEP), Segmental K-means algorithm
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/135
Journal articles
Thirteenth International Conferences on Computer Applications(ICCA 2015)
Conference papers
Books/reports/chapters
Thesis/dissertations
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats