Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "a11412be-c683-46b7-bf38-3c5905e6acbd"}, "_deposit": {"id": "3542", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3542"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3542", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Clustering Technique using Concepts for Web Documents", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Web document clustering becomes an essentialtechnology with the popularity of the Internet. Thatalso means that fast and high-quality documentclustering techniques play core topics. One of themain issues for clustering is the feature selection forthe documents. The selected features should containsufficient or more reliable information about originalweb documents. Feature selection is importantbecause some of the irrelevant or redundant featuremay misguide the clustering result. To counteractthis issue, this paper proposes the concept weight forfeature selection which can improve the efficiencyand accuracy of clustering. The system is designed toperform document preprocessing, weight estimationand clustering process that uses the term weight andsemantic weight. This paper introduces a methodwhich proposed the concept weight for clusteringprocess."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Clustering"}, {"interim": "feature selection"}, {"interim": "concept weight"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-25"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (81).pdf", "filesize": [{"value": "29 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 29000.0, "url": {"url": "https://meral.edu.mm/record/3542/files/psc2010paper (81).pdf"}, "version_id": "5abb3137-26b0-4d47-9a9f-bf461a3bd775"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Tar, Hmway Hmway"}, {"subitem_authors_fullname": "Nyunt, Thi Thi Soe"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1282"}, "item_title": "Clustering Technique using Concepts for Web Documents", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003542", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-25"}, "publish_date": "2019-07-25", "publish_status": "0", "recid": "3542", "relation": {}, "relation_version_is_last": true, "title": ["Clustering Technique using Concepts for Web Documents"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Clustering Technique using Concepts for Web Documents

http://hdl.handle.net/20.500.12678/0000003542
http://hdl.handle.net/20.500.12678/0000003542
b4708555-1a36-4094-9bf9-77b38bb77fe8
a11412be-c683-46b7-bf38-3c5905e6acbd
None
Preview
Name / File License Actions
psc2010paper psc2010paper (81).pdf (29 Kb)
Publication type
Article
Upload type
Publication
Title
Title Clustering Technique using Concepts for Web Documents
Language en
Publication date 2010-12-16
Authors
Tar, Hmway Hmway
Nyunt, Thi Thi Soe
Description
Web document clustering becomes an essentialtechnology with the popularity of the Internet. Thatalso means that fast and high-quality documentclustering techniques play core topics. One of themain issues for clustering is the feature selection forthe documents. The selected features should containsufficient or more reliable information about originalweb documents. Feature selection is importantbecause some of the irrelevant or redundant featuremay misguide the clustering result. To counteractthis issue, this paper proposes the concept weight forfeature selection which can improve the efficiencyand accuracy of clustering. The system is designed toperform document preprocessing, weight estimationand clustering process that uses the term weight andsemantic weight. This paper introduces a methodwhich proposed the concept weight for clusteringprocess.
Keywords
Clustering, feature selection, concept weight
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/1282
Journal articles
Fifth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 13:07:28.011982
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL