Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "5a9709c6-26f1-41f4-8e6a-74a968d9e945"}, "_deposit": {"id": "3529", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3529"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3529", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Non Linear Great Deluge Hyper Heuristic with Reinforcement Learning for Scheduling Problem", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Nowadays, scheduling problems arise in almostall areas of human activity. To handle the complexityof the real world scheduling problems, manyresearchers have been invested over the years.Currently research is being directed to raise the levelof generality. Therefore, this has led to thedevelopment of hyper heuristics system. A hyperheuristic is high level problem solving methodologythat performs a search over the space generated by aset of low level heuristics. A motivating goal of hyperheuristic research is to create automated techniquesthat applicable to a wide range of problems withdifferent characteristics. One of the hyper heuristicframeworks is based on a single point searchcontaining two main stages: heuristic selection andmove acceptance. By using exam timetablingproblem as a test bed, this paper proposes the nonlinear great deluge hyper heuristic withreinforcement learning method to intend to improvethe performance of hyper heuristic"}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-25"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (68).pdf", "filesize": [{"value": "45 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 45000.0, "url": {"url": "https://meral.edu.mm/record/3529/files/psc2010paper (68).pdf"}, "version_id": "adf98e7e-475a-404b-bfc4-96abea57f2a2"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Sin, Ei Shwe"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1270"}, "item_title": "Non Linear Great Deluge Hyper Heuristic with Reinforcement Learning for Scheduling Problem", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003529", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-25"}, "publish_date": "2019-07-25", "publish_status": "0", "recid": "3529", "relation": {}, "relation_version_is_last": true, "title": ["Non Linear Great Deluge Hyper Heuristic with Reinforcement Learning for Scheduling Problem"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Non Linear Great Deluge Hyper Heuristic with Reinforcement Learning for Scheduling Problem

http://hdl.handle.net/20.500.12678/0000003529
http://hdl.handle.net/20.500.12678/0000003529
62a9cb19-40f2-46e4-b81c-07746d07185a
5a9709c6-26f1-41f4-8e6a-74a968d9e945
None
Preview
Name / File License Actions
psc2010paper psc2010paper (68).pdf (45 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 13:06:41.715359
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL