MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "5b3a6ca2-eb35-4d2c-8a4b-57b06b0aefd0"}, "_deposit": {"id": "3507", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3507"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3507", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Model based Investigation of Pandemic Influenza", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "A pandemic is an epidemic of humandisease occurring over a very wide area, crossinginternational boundaries and affecting a largenumber of people. Influenza is a virus that causesrespiratory disease in humans, with typicalsymptoms of fever, cough, and muscle ache andpneumonia and death. This system can learn thepatterns using Bayesian Analysis and develop aDecision Support System. Bayesian Classifier isbased on the theorem of posterior probability.Calculate the probability when the new case comes.Computer-based medical systems are playing anincreasing relevant role in assisting both diagnosisand treatments. This paper intends to developBayesian Classification method for flu diagnosisbased on the symptoms of the patients. This systemstores the knowledge of the medical experts and themedical record. Based on the knowledge stored, thesystem can learn the pattern using BayesianAnalysis and decides the probability when the newcase comes. To develop a Decision Support Systemfor automatic classification method for PandemicInfluenza based on symptom of the patients.Decision support system is also used for the patientwho tests themselves at home instead of clinical test."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Bayes\u0027 Theorem"}, {"interim": "Classifier Accuracy"}, {"interim": "Decision Support Systems (DSS)"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-24"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (47).pdf", "filesize": [{"value": "489 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 489000.0, "url": {"url": "https://meral.edu.mm/record/3507/files/psc2010paper (47).pdf"}, "version_id": "d24d1cb4-bbc5-4b0c-850b-101bc0488c5b"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aung, Ei Ei"}, {"subitem_authors_fullname": "San, Khin Moe"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1250"}, "item_title": "Model based Investigation of Pandemic Influenza", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003507", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-24"}, "publish_date": "2019-07-24", "publish_status": "0", "recid": "3507", "relation": {}, "relation_version_is_last": true, "title": ["Model based Investigation of Pandemic Influenza"], "weko_shared_id": -1}
Model based Investigation of Pandemic Influenza
http://hdl.handle.net/20.500.12678/0000003507
http://hdl.handle.net/20.500.12678/000000350784f1c86d-21cf-430a-9930-70ec1a124312
5b3a6ca2-eb35-4d2c-8a4b-57b06b0aefd0
Name / File | License | Actions |
---|---|---|
psc2010paper (47).pdf (489 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Model based Investigation of Pandemic Influenza | |||||
Language | en | |||||
Publication date | 2010-12-16 | |||||
Authors | ||||||
Aung, Ei Ei | ||||||
San, Khin Moe | ||||||
Description | ||||||
A pandemic is an epidemic of humandisease occurring over a very wide area, crossinginternational boundaries and affecting a largenumber of people. Influenza is a virus that causesrespiratory disease in humans, with typicalsymptoms of fever, cough, and muscle ache andpneumonia and death. This system can learn thepatterns using Bayesian Analysis and develop aDecision Support System. Bayesian Classifier isbased on the theorem of posterior probability.Calculate the probability when the new case comes.Computer-based medical systems are playing anincreasing relevant role in assisting both diagnosisand treatments. This paper intends to developBayesian Classification method for flu diagnosisbased on the symptoms of the patients. This systemstores the knowledge of the medical experts and themedical record. Based on the knowledge stored, thesystem can learn the pattern using BayesianAnalysis and decides the probability when the newcase comes. To develop a Decision Support Systemfor automatic classification method for PandemicInfluenza based on symptom of the patients.Decision support system is also used for the patientwho tests themselves at home instead of clinical test. | ||||||
Keywords | ||||||
Bayes' Theorem, Classifier Accuracy, Decision Support Systems (DSS) | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/1250 | |||||
Journal articles | ||||||
Fifth Local Conference on Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |