MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "23c61d9e-529e-4c64-911f-acf41b83c09c"}, "_deposit": {"id": "3502", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3502"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3502", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Recommender System Using Item-Based Collaborative Filtering", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "The tremendous growth in the amount of available information and the number of visitors to Web sites in recent years poses some key challenges for recommender systems. Recommender systems form a specific type of information filtering (IF) technique that attempts to present information items ( movies, music, books, news, images, web pages, etc., ) that are likely of interest to the user. They produce high quality recommendation and perform many recommendations per second for millions of users and items and achieving high coverage in the face of data sparsity. Most systems are implemented using the k-nearest neighbor collaborative filtering but have some weakness in searching on the Web. To address these issues, item-based collaborative filtering techniques have been explored. Firstly, item-based techniques analyze the user-item matrix to identify relationship between different items and then use these relationships to compute indirectly the user’s profile to some reference characteristics, and seek to predict the ‘rating’ that a user would give to an item they had not yet considered."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Collaborative Filtering"}, {"interim": "Recommender"}, {"interim": "e-Commerce"}, {"interim": "Data-Mining"}, {"interim": "knowledge Discovery"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-24"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (43).pdf", "filesize": [{"value": "474 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 474000.0, "url": {"url": "https://meral.edu.mm/record/3502/files/psc2010paper (43).pdf"}, "version_id": "eecfdef8-ce9d-490b-85a7-8e3e73704f84"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Soe, Cherry"}, {"subitem_authors_fullname": "Khaing, Thet Thet"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1246"}, "item_title": "Recommender System Using Item-Based Collaborative Filtering", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003502", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-24"}, "publish_date": "2019-07-24", "publish_status": "0", "recid": "3502", "relation": {}, "relation_version_is_last": true, "title": ["Recommender System Using Item-Based Collaborative Filtering"], "weko_shared_id": -1}
Recommender System Using Item-Based Collaborative Filtering
http://hdl.handle.net/20.500.12678/0000003502
http://hdl.handle.net/20.500.12678/00000035026d8bea5e-4fbb-4958-9faa-76a1ef86adfc
23c61d9e-529e-4c64-911f-acf41b83c09c
Name / File | License | Actions |
---|---|---|
psc2010paper (43).pdf (474 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Recommender System Using Item-Based Collaborative Filtering | |||||
Language | en | |||||
Publication date | 2010-12-16 | |||||
Authors | ||||||
Soe, Cherry | ||||||
Khaing, Thet Thet | ||||||
Description | ||||||
The tremendous growth in the amount of available information and the number of visitors to Web sites in recent years poses some key challenges for recommender systems. Recommender systems form a specific type of information filtering (IF) technique that attempts to present information items ( movies, music, books, news, images, web pages, etc., ) that are likely of interest to the user. They produce high quality recommendation and perform many recommendations per second for millions of users and items and achieving high coverage in the face of data sparsity. Most systems are implemented using the k-nearest neighbor collaborative filtering but have some weakness in searching on the Web. To address these issues, item-based collaborative filtering techniques have been explored. Firstly, item-based techniques analyze the user-item matrix to identify relationship between different items and then use these relationships to compute indirectly the user’s profile to some reference characteristics, and seek to predict the ‘rating’ that a user would give to an item they had not yet considered. | ||||||
Keywords | ||||||
Collaborative Filtering, Recommender, e-Commerce, Data-Mining, knowledge Discovery | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/1246 | |||||
Journal articles | ||||||
Fifth Local Conference on Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |