Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "1e5dc475-a597-4834-a406-19f0cfb1c706"}, "_deposit": {"id": "3501", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3501"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3501", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Automated Detection of Lung Tuberculosis Based on X-ray Image Analysis", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Detection of lung tuberculosis is mostly based on X-ray images. Image segmentation is important in different fields of image processing. Image segmentation is process of dividing images according to its characteristics. Different methods are presented for image segmentation. In this paper to find nodules, symptoms of diseases in X-ray images, we use watershed segmentation approach. First take the gray scale image and then applying the watershed segmentation approach to segment the image with catchment basins. When the lung image is isolated from X-ray image, the suspected nodule pixels in the lung can be found. Based on nodules and user’s input symptoms, patient can be defined either suffer from lung TB or not."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "watershed transformation"}, {"interim": "catchment basins"}, {"interim": "lung tuberculosis"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-24"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (42).pdf", "filesize": [{"value": "304 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 304000.0, "url": {"url": "https://meral.edu.mm/record/3501/files/psc2010paper (42).pdf"}, "version_id": "540f8574-f6e6-451c-a6c8-81a028b225e7"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth  Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Oo, May Thitsa"}, {"subitem_authors_fullname": "Htway, Thin Thin"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1245"}, "item_title": "Automated Detection of Lung Tuberculosis Based on X-ray Image Analysis", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003501", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-24"}, "publish_date": "2019-07-24", "publish_status": "0", "recid": "3501", "relation": {}, "relation_version_is_last": true, "title": ["Automated Detection of Lung Tuberculosis Based on X-ray Image Analysis"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Automated Detection of Lung Tuberculosis Based on X-ray Image Analysis

http://hdl.handle.net/20.500.12678/0000003501
http://hdl.handle.net/20.500.12678/0000003501
956fc09f-daa1-441f-a81e-8fefcd8ceb13
1e5dc475-a597-4834-a406-19f0cfb1c706
None
Preview
Name / File License Actions
psc2010paper psc2010paper (42).pdf (304 Kb)
Publication type
Article
Upload type
Publication
Title
Title Automated Detection of Lung Tuberculosis Based on X-ray Image Analysis
Language en
Publication date 2010-12-16
Authors
Oo, May Thitsa
Htway, Thin Thin
Description
Detection of lung tuberculosis is mostly based on X-ray images. Image segmentation is important in different fields of image processing. Image segmentation is process of dividing images according to its characteristics. Different methods are presented for image segmentation. In this paper to find nodules, symptoms of diseases in X-ray images, we use watershed segmentation approach. First take the gray scale image and then applying the watershed segmentation approach to segment the image with catchment basins. When the lung image is isolated from X-ray image, the suspected nodule pixels in the lung can be found. Based on nodules and user’s input symptoms, patient can be defined either suffer from lung TB or not.
Keywords
watershed transformation, catchment basins, lung tuberculosis
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/1245
Journal articles
Fifth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 13:04:14.238060
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL