MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "1e5dc475-a597-4834-a406-19f0cfb1c706"}, "_deposit": {"id": "3501", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3501"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3501", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Automated Detection of Lung Tuberculosis Based on X-ray Image Analysis", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Detection of lung tuberculosis is mostly based on X-ray images. Image segmentation is important in different fields of image processing. Image segmentation is process of dividing images according to its characteristics. Different methods are presented for image segmentation. In this paper to find nodules, symptoms of diseases in X-ray images, we use watershed segmentation approach. First take the gray scale image and then applying the watershed segmentation approach to segment the image with catchment basins. When the lung image is isolated from X-ray image, the suspected nodule pixels in the lung can be found. Based on nodules and user’s input symptoms, patient can be defined either suffer from lung TB or not."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "watershed transformation"}, {"interim": "catchment basins"}, {"interim": "lung tuberculosis"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-24"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (42).pdf", "filesize": [{"value": "304 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 304000.0, "url": {"url": "https://meral.edu.mm/record/3501/files/psc2010paper (42).pdf"}, "version_id": "540f8574-f6e6-451c-a6c8-81a028b225e7"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Oo, May Thitsa"}, {"subitem_authors_fullname": "Htway, Thin Thin"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1245"}, "item_title": "Automated Detection of Lung Tuberculosis Based on X-ray Image Analysis", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003501", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-24"}, "publish_date": "2019-07-24", "publish_status": "0", "recid": "3501", "relation": {}, "relation_version_is_last": true, "title": ["Automated Detection of Lung Tuberculosis Based on X-ray Image Analysis"], "weko_shared_id": -1}
Automated Detection of Lung Tuberculosis Based on X-ray Image Analysis
http://hdl.handle.net/20.500.12678/0000003501
http://hdl.handle.net/20.500.12678/0000003501956fc09f-daa1-441f-a81e-8fefcd8ceb13
1e5dc475-a597-4834-a406-19f0cfb1c706
Name / File | License | Actions |
---|---|---|
psc2010paper (42).pdf (304 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Automated Detection of Lung Tuberculosis Based on X-ray Image Analysis | |||||
Language | en | |||||
Publication date | 2010-12-16 | |||||
Authors | ||||||
Oo, May Thitsa | ||||||
Htway, Thin Thin | ||||||
Description | ||||||
Detection of lung tuberculosis is mostly based on X-ray images. Image segmentation is important in different fields of image processing. Image segmentation is process of dividing images according to its characteristics. Different methods are presented for image segmentation. In this paper to find nodules, symptoms of diseases in X-ray images, we use watershed segmentation approach. First take the gray scale image and then applying the watershed segmentation approach to segment the image with catchment basins. When the lung image is isolated from X-ray image, the suspected nodule pixels in the lung can be found. Based on nodules and user’s input symptoms, patient can be defined either suffer from lung TB or not. | ||||||
Keywords | ||||||
watershed transformation, catchment basins, lung tuberculosis | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/1245 | |||||
Journal articles | ||||||
Fifth Local Conference on Parallel and Soft Computing | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |