Index Link

  • RootNode

Item

{"_buckets": {"deposit": "53fcaa40-8cbe-44fa-8f75-f3b2699ffdd4"}, "_deposit": {"id": "3491", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3491"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3491", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Fingerprint Type Classification Using Learning Vector Quantization", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "This paper proposes a fingerprint typesclassification algorithm using Learning VectorQuantization (LVQ) with FingerCode features. Thisalgorithm assigns each fingerprint image to one ofthe five subclasses, according to the Henry system:Arch(A), Tented Arch(T), Left Loop(L), RightLoop(R), and Whorl Loop(W). The search for aspecific fingerprint can therefore be performed onlyon specific subclasses containing a small portion of alarge database, which will save enormouscomputational time. We use the feature vectors fromFingerCode generation process to train with theLVQ classifiers. In our feature extraction process,the oriented components are extracted from afingerprint image using a bank of Gabor filters, anda feature vector is computed for each orientedcomponent. The feature vectors from the input imageare classified using LVQ classifier. This algorithmhas been tested the fingerprint database. For the 100fingerprint images, the classification accuracy is 93%, with 7 % error rate for 5-classes."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-24"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (32).pdf", "filesize": [{"value": "575 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 575000.0, "url": {"url": "https://meral.edu.mm/record/3491/files/psc2010paper (32).pdf"}, "version_id": "0d03fdb5-2842-4eb9-96dd-98f718553ff0"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth  Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Phyo, Aye Su"}, {"subitem_authors_fullname": "Sandar, Khin"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1236"}, "item_title": "Fingerprint Type Classification Using Learning Vector Quantization", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003491", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-24"}, "publish_date": "2019-07-24", "publish_status": "0", "recid": "3491", "relation": {}, "relation_version_is_last": true, "title": ["Fingerprint Type Classification Using Learning Vector Quantization"], "weko_shared_id": -1}

Fingerprint Type Classification Using Learning Vector Quantization

http://hdl.handle.net/20.500.12678/0000003491
a5f44c06-f797-4786-8e58-7b268a8ac6b7
53fcaa40-8cbe-44fa-8f75-f3b2699ffdd4
None
Name / File License Actions
psc2010paper psc2010paper (32).pdf (575 Kb)
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats