Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "ace53a62-bd90-4be3-b004-b74901054a4e"}, "_deposit": {"id": "3483", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3483"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3483", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "HAND GESTURE RECOGNITION USING ORIENTATION HISTOGRAM AND BACKPROPAGATION NEURAL NETWORK", "subitem_1551255648112": ""}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "This paper presents to recognize American Sign Language (ASL) hand gestures, based on a pattern recognition technique by using orientation histograms and backpropagation neural network (BPNN). The static ASL digitized images of English alphabets are used in this hand gesture recognition system. In this system orientation histogram is used as feature vectors because of its robustness in lighting changes conditions of images and also the position of the hand within the image should not affect the feature vector. The advantage of using BPNN is that it can perform a particular function by adjusting the values of the connections between elements, so input feature vector leads to specific target output. This system consists of Image Processing, Training and Testing phases in BPNN. The output of the system will be displayed the corresponding alphabet letter with corresponding input feature vectors. This system will be beneficial between the deaf and hearing communities problems."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "American Sign Language"}, {"interim": "Orientation Histogram"}, {"interim": "Backpropagation Neural Network"}, {"interim": "Feature Vector"}, {"interim": "Hand Gesture"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-23"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (29).pdf", "filesize": [{"value": "211 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 211000.0, "url": {"url": "https://meral.edu.mm/record/3483/files/psc2010paper (29).pdf"}, "version_id": "f698e464-257f-4317-9cde-826ec411d937"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth  Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Aung, Khin Pa Pa"}, {"subitem_authors_fullname": "Aye, Zin May"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1229"}, "item_title": "HAND GESTURE RECOGNITION USING ORIENTATION HISTOGRAM AND BACKPROPAGATION NEURAL NETWORK", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003483", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-23"}, "publish_date": "2019-07-23", "publish_status": "0", "recid": "3483", "relation": {}, "relation_version_is_last": true, "title": ["HAND GESTURE RECOGNITION USING ORIENTATION HISTOGRAM AND BACKPROPAGATION NEURAL NETWORK"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

HAND GESTURE RECOGNITION USING ORIENTATION HISTOGRAM AND BACKPROPAGATION NEURAL NETWORK

http://hdl.handle.net/20.500.12678/0000003483
http://hdl.handle.net/20.500.12678/0000003483
821a93a4-b87e-4236-a2ff-a60c04362ee3
ace53a62-bd90-4be3-b004-b74901054a4e
None
Preview
Name / File License Actions
psc2010paper psc2010paper (29).pdf (211 Kb)
Publication type
Article
Upload type
Publication
Title
Title HAND GESTURE RECOGNITION USING ORIENTATION HISTOGRAM AND BACKPROPAGATION NEURAL NETWORK
Publication date 2010-12-16
Authors
Aung, Khin Pa Pa
Aye, Zin May
Description
This paper presents to recognize American Sign Language (ASL) hand gestures, based on a pattern recognition technique by using orientation histograms and backpropagation neural network (BPNN). The static ASL digitized images of English alphabets are used in this hand gesture recognition system. In this system orientation histogram is used as feature vectors because of its robustness in lighting changes conditions of images and also the position of the hand within the image should not affect the feature vector. The advantage of using BPNN is that it can perform a particular function by adjusting the values of the connections between elements, so input feature vector leads to specific target output. This system consists of Image Processing, Training and Testing phases in BPNN. The output of the system will be displayed the corresponding alphabet letter with corresponding input feature vectors. This system will be beneficial between the deaf and hearing communities problems.
Keywords
American Sign Language, Orientation Histogram, Backpropagation Neural Network, Feature Vector, Hand Gesture
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/1229
Journal articles
Fifth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 13:01:41.934521
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL