Index Link

  • RootNode

Item

{"_buckets": {"deposit": "b29acf5a-7f24-48fb-ba18-8e07237910fe"}, "_deposit": {"id": "3481", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3481"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3481", "sets": ["1597824273898", "user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Depression Detection from Speech Emotion Recognition", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "The recognition of the internal emotional stateof a person plays an important role in several humanrelatedfields. Emotions constitute an essential part ofour existence as it exerts great influence on thephysical and mental health of people. Depression is acommon mental disorder. Developments in affectivesensing technology with focus on acoustic features willpotentially bring a change due to depressed patients’slow, hesitating, monotonous voice as remarkablecharacteristics. This paper will present classificationof emotions and from it, depression is detected byusing speech signals. Both time and frequency domainfeatures will be used in feature vector extraction. Infeature extraction, the paper will use wavelettransform and MFCC. DenseNet will be used to detectthe emotion, classify the type of emotion and thendepression."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "internal emotional state"}, {"interim": "feature vector extraction"}, {"interim": "wavelet transform"}, {"interim": "MFCC"}, {"interim": "Densenet"}, {"interim": "Depression"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-23"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "ICCA 2019 Proceedings Book-pages-312-316.pdf", "filesize": [{"value": "799 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 799000.0, "url": {"url": "https://meral.edu.mm/record/3481/files/ICCA 2019 Proceedings Book-pages-312-316.pdf"}, "version_id": "fec17b15-7dbe-4ef0-a61b-1699d4fa059e"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Seventeenth International Conference on Computer Applications(ICCA 2019)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Mar, Lwin Lwin"}, {"subitem_authors_fullname": "Pa, Win Pa"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-02-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1227"}, "item_title": "Depression Detection from Speech Emotion Recognition", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003481", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-23"}, "publish_date": "2019-07-23", "publish_status": "0", "recid": "3481", "relation": {}, "relation_version_is_last": true, "title": ["Depression Detection from Speech Emotion Recognition"], "weko_shared_id": -1}

Depression Detection from Speech Emotion Recognition

http://hdl.handle.net/20.500.12678/0000003481
cbbe664a-bca2-49b7-8676-6e059f950dca
b29acf5a-7f24-48fb-ba18-8e07237910fe
None
Name / File License Actions
ICCA ICCA 2019 Proceedings Book-pages-312-316.pdf (799 Kb)
Publication type
Article
Upload type
Publication
Title
Title Depression Detection from Speech Emotion Recognition
Language en
Publication date 2019-02-27
Authors
Mar, Lwin Lwin
Pa, Win Pa
Description
The recognition of the internal emotional stateof a person plays an important role in several humanrelatedfields. Emotions constitute an essential part ofour existence as it exerts great influence on thephysical and mental health of people. Depression is acommon mental disorder. Developments in affectivesensing technology with focus on acoustic features willpotentially bring a change due to depressed patients’slow, hesitating, monotonous voice as remarkablecharacteristics. This paper will present classificationof emotions and from it, depression is detected byusing speech signals. Both time and frequency domainfeatures will be used in feature vector extraction. Infeature extraction, the paper will use wavelettransform and MFCC. DenseNet will be used to detectthe emotion, classify the type of emotion and thendepression.
Keywords
internal emotional state, feature vector extraction, wavelet transform, MFCC, Densenet, Depression
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/1227
Journal articles
Seventeenth International Conference on Computer Applications(ICCA 2019)
Conference papers
Books/reports/chapters
Thesis/dissertations
0
0
views
downloads
Views Downloads

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats