MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "89b1fb85-a102-4867-bc2f-3ddd3b72783a"}, "_deposit": {"id": "3460", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3460"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3460", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Object Detection Using Regions with Convolutional Neural Networks (R-CNN)", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "With an importance of artificial intelligence intoday’s world, deep learning technology hasdeveloped very powerful in solving many problems invarious fields that is included in speech recognition,natural language processing, computer visiontechnologies, image processing and video, anddifferent kinds of multimedia. Due to the developmentof deep learning approach, visual recognitionsystems have achieved in good performance. With theincrease of smart application in visual recognition,powerful object detection systems are necessarilyneeded. In detecting objects, object classification isas a very important role. Deep Neural Network(DNN) can greatly achieved in classifying objects. Inthe experiment, object detection system for stop signis implemented by using Regions with ConvolutionalNeural Networks (R-CNN) that is used to classifyimage regions included in an image. The systemintended to provide object detection accurately."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Object Detection"}, {"interim": "Deep Neural Network (DNN)"}, {"interim": "Convolutional Neural Networks (CNN)"}, {"interim": "Regions with Convolutional Neural Networks (RCNN)"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-23"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "ICCA 2019 Proceedings Book-pages-212-217.pdf", "filesize": [{"value": "1391 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 1391000.0, "url": {"url": "https://meral.edu.mm/record/3460/files/ICCA 2019 Proceedings Book-pages-212-217.pdf"}, "version_id": "c2126dad-3e97-40dd-9ff6-d5c438145510"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Seventeenth International Conference on Computer Applications(ICCA 2019)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Cherry, Hnin"}, {"subitem_authors_fullname": "Sein, Myint Myint"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-02-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1208"}, "item_title": "Object Detection Using Regions with Convolutional Neural Networks (R-CNN)", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003460", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-23"}, "publish_date": "2019-07-23", "publish_status": "0", "recid": "3460", "relation": {}, "relation_version_is_last": true, "title": ["Object Detection Using Regions with Convolutional Neural Networks (R-CNN)"], "weko_shared_id": -1}
Object Detection Using Regions with Convolutional Neural Networks (R-CNN)
http://hdl.handle.net/20.500.12678/0000003460
http://hdl.handle.net/20.500.12678/00000034603f126502-6657-4b9e-a9e8-6b73419b6d3f
89b1fb85-a102-4867-bc2f-3ddd3b72783a
Name / File | License | Actions |
---|---|---|
ICCA 2019 Proceedings Book-pages-212-217.pdf (1391 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Object Detection Using Regions with Convolutional Neural Networks (R-CNN) | |||||
Language | en | |||||
Publication date | 2019-02-27 | |||||
Authors | ||||||
Cherry, Hnin | ||||||
Sein, Myint Myint | ||||||
Description | ||||||
With an importance of artificial intelligence intoday’s world, deep learning technology hasdeveloped very powerful in solving many problems invarious fields that is included in speech recognition,natural language processing, computer visiontechnologies, image processing and video, anddifferent kinds of multimedia. Due to the developmentof deep learning approach, visual recognitionsystems have achieved in good performance. With theincrease of smart application in visual recognition,powerful object detection systems are necessarilyneeded. In detecting objects, object classification isas a very important role. Deep Neural Network(DNN) can greatly achieved in classifying objects. Inthe experiment, object detection system for stop signis implemented by using Regions with ConvolutionalNeural Networks (R-CNN) that is used to classifyimage regions included in an image. The systemintended to provide object detection accurately. | ||||||
Keywords | ||||||
Object Detection, Deep Neural Network (DNN), Convolutional Neural Networks (CNN), Regions with Convolutional Neural Networks (RCNN) | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/1208 | |||||
Journal articles | ||||||
Seventeenth International Conference on Computer Applications(ICCA 2019) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |