Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking


Index Link

Index Tree

  • RootNode

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "4f23163a-fb0c-4d96-885a-8367d4368517"}, "_deposit": {"id": "3449", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3449"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3449", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Lexicalized Reordering Models for English-Myanmar Phrase-based Statistical Machine Translation", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Reordering is extremely desirable fortranslation accuracy when translating between highdisparity language pairs in word order. The aim ofthis paper is the comparative study of lexicalizedreordering models (LRM) by Moses to investigate thetranslation performance for English-Myanmarstatistical machine translation (SMT) system. Thestudied methods are word-based, phrase-based andhierarchical phrase-based LRM by using variousorientations and distortion limits. This reorderingmodel calculates reordering probability conditionedon the word of each phrase pair. We applied Mosesphrase-based SMT (PBSMT) system to makeexperiments for the variants of LRM and evaluatedthe BLEU and RIBES scores to measure theperformance of machine translation. According to thisexperiments, hierarchical phrase-based reorderingmodel in MSD orientation gives the highest scores inEnglish-Myanmar SMT system."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "statistical machine translation (SMT)"}, {"interim": "Lexicalized reordering model (LRM)"}, {"interim": "orientations"}, {"interim": "reordering probabilities"}, {"interim": "Moses"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-23"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "ICCA 2019 Proceedings Book-pages-158-164.pdf", "filesize": [{"value": "778 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 778000.0, "url": {"url": "https://meral.edu.mm/record/3449/files/ICCA 2019 Proceedings Book-pages-158-164.pdf"}, "version_id": "46ca6eab-7c27-43ba-a048-df1b7df5c2ae"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Seventeenth International Conference on Computer Applications(ICCA 2019)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Nyein, May Kyi"}, {"subitem_authors_fullname": "Soe, Khin Mar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-02-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1198"}, "item_title": "Lexicalized Reordering Models for English-Myanmar Phrase-based Statistical Machine Translation", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003449", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-23"}, "publish_date": "2019-07-23", "publish_status": "0", "recid": "3449", "relation": {}, "relation_version_is_last": true, "title": ["Lexicalized Reordering Models for English-Myanmar Phrase-based Statistical Machine Translation"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Lexicalized Reordering Models for English-Myanmar Phrase-based Statistical Machine Translation

http://hdl.handle.net/20.500.12678/0000003449
http://hdl.handle.net/20.500.12678/0000003449
b91675f9-7268-46ca-9dcd-54e038b69b4f
4f23163a-fb0c-4d96-885a-8367d4368517
None
Preview
Name / File License Actions
ICCA ICCA 2019 Proceedings Book-pages-158-164.pdf (778 Kb)
Publication type
Article
Upload type
Publication
Title
Title Lexicalized Reordering Models for English-Myanmar Phrase-based Statistical Machine Translation
Language en
Publication date 2019-02-27
Authors
Nyein, May Kyi
Soe, Khin Mar
Description
Reordering is extremely desirable fortranslation accuracy when translating between highdisparity language pairs in word order. The aim ofthis paper is the comparative study of lexicalizedreordering models (LRM) by Moses to investigate thetranslation performance for English-Myanmarstatistical machine translation (SMT) system. Thestudied methods are word-based, phrase-based andhierarchical phrase-based LRM by using variousorientations and distortion limits. This reorderingmodel calculates reordering probability conditionedon the word of each phrase pair. We applied Mosesphrase-based SMT (PBSMT) system to makeexperiments for the variants of LRM and evaluatedthe BLEU and RIBES scores to measure theperformance of machine translation. According to thisexperiments, hierarchical phrase-based reorderingmodel in MSD orientation gives the highest scores inEnglish-Myanmar SMT system.
Keywords
statistical machine translation (SMT), Lexicalized reordering model (LRM), orientations, reordering probabilities, Moses
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/1198
Journal articles
Seventeenth International Conference on Computer Applications(ICCA 2019)
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 12:31:46.551744
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL