MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "a9a67392-2683-4927-836f-b772ff26f45b"}, "_deposit": {"id": "3446", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3446"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3446", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "CLASSIFICATION OF SOIL TYPE USING BACKPROPAGATION NEURAL NETWORK", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "A number of classification systems have been developed depending on the intended purpose of the system. Soil classification has proved to be very useful for soil engineers. Classification of soil type is an ever challenging area of investigation for scientists. This system is used to classify soil according to their general behavior under given physical conditions. The system is present soil classification using Backpropagation Neural Network. The result is very encouraging and it is found that the feature based soil type can make prediction with degree of accuracy. Classification of soil type can also build an awareness and knowledge of each irrigated field."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-23"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (240).pdf", "filesize": [{"value": "472 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 472000.0, "url": {"url": "https://meral.edu.mm/record/3446/files/psc2010paper (240).pdf"}, "version_id": "1e19984e-03d1-44b2-8229-a786c238655d"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Htun, Wanna"}, {"subitem_authors_fullname": "Htay, Sandar"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1195"}, "item_title": "CLASSIFICATION OF SOIL TYPE USING BACKPROPAGATION NEURAL NETWORK", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003446", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-23"}, "publish_date": "2019-07-23", "publish_status": "0", "recid": "3446", "relation": {}, "relation_version_is_last": true, "title": ["CLASSIFICATION OF SOIL TYPE USING BACKPROPAGATION NEURAL NETWORK"], "weko_shared_id": -1}
CLASSIFICATION OF SOIL TYPE USING BACKPROPAGATION NEURAL NETWORK
http://hdl.handle.net/20.500.12678/0000003446
http://hdl.handle.net/20.500.12678/0000003446a86d86cf-3b32-4d33-9577-1d7531ab5847
a9a67392-2683-4927-836f-b772ff26f45b
Name / File | License | Actions |
---|---|---|
psc2010paper (240).pdf (472 Kb)
|
|