MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "738cf157-e247-45fd-8bdb-68c316acf141"}, "_deposit": {"id": "3425", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3425"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3425", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Detecting Tropical Cyclone Using Infrared Satellite Images", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Tropical Cyclone (TC) are among the mostdestructive natural disasters. Analysis of TC imagefrom infrared satellite images is an active field ofresearch. Many algorithms were developed in pastfew decades on TC image analysis. The location ofTC is always an important and difficult problem.Many researchers have tried to detect the rightRegion of Interest (ROI) from the imageautomatically. In this paper, feature extractionmethod based on modified Morphological processingand the color segmentation approach based on theintensity transformation and color spaces are appliedfor automatically extraction the location of storms.45 TCs occurred between 1989 and 2014, are testedand several experiments have been done to evaluatethe proposed system."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Satellite Images"}, {"interim": "Region of Interest"}, {"interim": "Morphological Processing"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-22"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "ICCA 2019 Proceedings Book-pages-106-110.pdf", "filesize": [{"value": "530 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 530000.0, "url": {"url": "https://meral.edu.mm/record/3425/files/ICCA 2019 Proceedings Book-pages-106-110.pdf"}, "version_id": "55f73017-a693-44bf-983f-0e96803ec73f"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Seventeenth International Conference on Computer Applications(ICCA 2019)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Hsan, Thu Zar"}, {"subitem_authors_fullname": "Sein, Myint Myint"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-02-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1178"}, "item_title": "Detecting Tropical Cyclone Using Infrared Satellite Images", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003425", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-22"}, "publish_date": "2019-07-22", "publish_status": "0", "recid": "3425", "relation": {}, "relation_version_is_last": true, "title": ["Detecting Tropical Cyclone Using Infrared Satellite Images"], "weko_shared_id": -1}
Detecting Tropical Cyclone Using Infrared Satellite Images
http://hdl.handle.net/20.500.12678/0000003425
http://hdl.handle.net/20.500.12678/0000003425d6f280b3-31d8-4eab-8273-046edd75ed35
738cf157-e247-45fd-8bdb-68c316acf141
Name / File | License | Actions |
---|---|---|
ICCA 2019 Proceedings Book-pages-106-110.pdf (530 Kb)
|
|
Publication type | ||||||
---|---|---|---|---|---|---|
Article | ||||||
Upload type | ||||||
Publication | ||||||
Title | ||||||
Title | Detecting Tropical Cyclone Using Infrared Satellite Images | |||||
Language | en | |||||
Publication date | 2019-02-27 | |||||
Authors | ||||||
Hsan, Thu Zar | ||||||
Sein, Myint Myint | ||||||
Description | ||||||
Tropical Cyclone (TC) are among the mostdestructive natural disasters. Analysis of TC imagefrom infrared satellite images is an active field ofresearch. Many algorithms were developed in pastfew decades on TC image analysis. The location ofTC is always an important and difficult problem.Many researchers have tried to detect the rightRegion of Interest (ROI) from the imageautomatically. In this paper, feature extractionmethod based on modified Morphological processingand the color segmentation approach based on theintensity transformation and color spaces are appliedfor automatically extraction the location of storms.45 TCs occurred between 1989 and 2014, are testedand several experiments have been done to evaluatethe proposed system. | ||||||
Keywords | ||||||
Satellite Images, Region of Interest, Morphological Processing | ||||||
Identifier | http://onlineresource.ucsy.edu.mm/handle/123456789/1178 | |||||
Journal articles | ||||||
Seventeenth International Conference on Computer Applications(ICCA 2019) | ||||||
Conference papers | ||||||
Books/reports/chapters | ||||||
Thesis/dissertations |