Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "de1bff45-2b86-423e-be6c-ca5dde4ace66"}, "_deposit": {"id": "3413", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3413"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3413", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Information Gain Measured Feature Selection to Reduce High Dimensional Data", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "While demand of the massive amount of datato be more effective and efficient mining strategies isincreasing significantly, practitioners andresearchers are trying to develop scalable machinelearning algorithms and strategies in turningmountains of data into nuggets. High dimension ofdata makes the memory, storage requirements andcomputational costs increased significantly.Therefore, reducing dimension can mainly improvelearning performance. Feature selection, a datapreprocessing technique, is effective and efficient toenhance data mining, data analytics and machinelearning. Most feature selection algorithms havebeen trying to eliminate irrelevant features. However,removing only irrelevant features is not enough to getthe best insight and patterns. Not only irrelevantfeatures but also redundant features can degradelearning performance. Feature selection methodswhich can eliminate both irrelevant and redundantfeatures are demanding in high dimensional dataanalytics. To solve this problem, information gainmeasured feature selection is presented in this work."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-22"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "ICCA 2019 Proceedings Book-pages-79-84.pdf", "filesize": [{"value": "335 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 335000.0, "url": {"url": "https://meral.edu.mm/record/3413/files/ICCA 2019 Proceedings Book-pages-79-84.pdf"}, "version_id": "4222e56a-545a-4d77-a5f6-fa7ff0d07083"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Seventeenth International Conference on Computer Applications(ICCA 2019)", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Win, Thee Zin"}, {"subitem_authors_fullname": "Kham, Nang Saing Moon"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2019-02-27"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1167"}, "item_title": "Information Gain Measured Feature Selection to Reduce High Dimensional Data", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003413", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-22"}, "publish_date": "2019-07-22", "publish_status": "0", "recid": "3413", "relation": {}, "relation_version_is_last": true, "title": ["Information Gain Measured Feature Selection to Reduce High Dimensional Data"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Information Gain Measured Feature Selection to Reduce High Dimensional Data

http://hdl.handle.net/20.500.12678/0000003413
http://hdl.handle.net/20.500.12678/0000003413
3366da3d-86fe-498c-b6ac-b5694d0a306b
de1bff45-2b86-423e-be6c-ca5dde4ace66
None
Preview
Name / File License Actions
ICCA ICCA 2019 Proceedings Book-pages-79-84.pdf (335 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 10:06:55.227036
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL