Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "2357c13f-95f1-417d-b449-2697fcda7e47"}, "_deposit": {"id": "3373", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3373"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3373", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Clustering Approach to Analyzing Student Data by using K-Means Algorithm", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Clustering is the process of grouping data intoclasses of clusters so that objects within a clusterhave high similarity in comparison to one another,but are very dissimilar to objects in other clusters.K-means clustering is a partitioning method. . Kmeansclustering algorithm is used to cluster thestudent data. The proposed system finds therelationship between students’ governmenttechnology high school (G.T.H.S) entranceexamination results and their success using clusteranalysis. Euclidean distance measure also used tocalculate the closest centroids for each object."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value_mlt": [{"interim": "Clustering Approach"}, {"interim": "K-means Algorithm"}, {"interim": "Euclidean distance"}]}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-22"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (191).pdf", "filesize": [{"value": "39 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 39000.0, "url": {"url": "https://meral.edu.mm/record/3373/files/psc2010paper (191).pdf"}, "version_id": "6582b085-62c0-44b0-b3e7-974b4b3ba8f2"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Wai, Khin Su Su"}, {"subitem_authors_fullname": "Min, Myat Myat"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1130"}, "item_title": "Clustering Approach to Analyzing Student Data by using K-Means Algorithm", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003373", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-22"}, "publish_date": "2019-07-22", "publish_status": "0", "recid": "3373", "relation": {}, "relation_version_is_last": true, "title": ["Clustering Approach to Analyzing Student Data by using K-Means Algorithm"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Clustering Approach to Analyzing Student Data by using K-Means Algorithm

http://hdl.handle.net/20.500.12678/0000003373
http://hdl.handle.net/20.500.12678/0000003373
d95b42b4-efec-4b75-8f26-e8f97951b4af
2357c13f-95f1-417d-b449-2697fcda7e47
None
Preview
Name / File License Actions
psc2010paper psc2010paper (191).pdf (39 Kb)
Publication type
Article
Upload type
Publication
Title
Title Clustering Approach to Analyzing Student Data by using K-Means Algorithm
Language en
Publication date 2010-12-16
Authors
Wai, Khin Su Su
Min, Myat Myat
Description
Clustering is the process of grouping data intoclasses of clusters so that objects within a clusterhave high similarity in comparison to one another,but are very dissimilar to objects in other clusters.K-means clustering is a partitioning method. . Kmeansclustering algorithm is used to cluster thestudent data. The proposed system finds therelationship between students’ governmenttechnology high school (G.T.H.S) entranceexamination results and their success using clusteranalysis. Euclidean distance measure also used tocalculate the closest centroids for each object.
Keywords
Clustering Approach, K-means Algorithm, Euclidean distance
Identifier http://onlineresource.ucsy.edu.mm/handle/123456789/1130
Journal articles
Fifth Local Conference on Parallel and Soft Computing
Conference papers
Books/reports/chapters
Thesis/dissertations
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 10:02:01.109375
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL