Log in
Language:

MERAL Myanmar Education Research and Learning Portal

  • Top
  • Universities
  • Ranking
To
lat lon distance
To

Field does not validate



Index Link

Index Tree

Please input email address.

WEKO

One fine body…

WEKO

One fine body…

Item

{"_buckets": {"deposit": "f60735aa-8fc5-4263-9e87-68fa78131ba6"}, "_deposit": {"id": "3346", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3346"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3346", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Musical Genre Classification using Gaussian Mixture Models", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Digital music is one of the most importantdata types, distributed by the Internet. Automaticmusical genre classification is very useful formusic indexing and retrieval. A method torecognize the genre of music audio is considered.In this paper, the input music is represented withDWT (Discrete Wavelet Transform) coefficientsand classifying the extracted features is performedusing Gaussian Mixture Models (GMM). UsingGMM the optimal class boundaries between fourgroups of genre namely, pop, classic, rock and jazzare obtained. The feature vector from featureextraction step uses wavelet coefficients byhierarchical decomposition as it is easy toimplement as well as it can reduce the computationtime and resources required. Given that GMM is arobust approach that could obtain very goodperformance and a solution based on it ispowerful, the classification is mainly composed ofGMM classifiers. The experimental results indicatethat the proposed approach offer encouragingresults."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-22"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (171).pdf", "filesize": [{"value": "67 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 67000.0, "url": {"url": "https://meral.edu.mm/record/3346/files/psc2010paper (171).pdf"}, "version_id": "bd57f92a-06f9-4c8d-997c-084d03057a01"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Oo, Su Myat Mon"}, {"subitem_authors_fullname": "Aye, Khin San"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1106"}, "item_title": "Musical Genre Classification using Gaussian Mixture Models", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003346", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-22"}, "publish_date": "2019-07-22", "publish_status": "0", "recid": "3346", "relation": {}, "relation_version_is_last": true, "title": ["Musical Genre Classification using Gaussian Mixture Models"], "weko_shared_id": -1}
  1. University of Computer Studies, Yangon
  2. Conferences

Musical Genre Classification using Gaussian Mixture Models

http://hdl.handle.net/20.500.12678/0000003346
http://hdl.handle.net/20.500.12678/0000003346
a64786e9-069f-413e-a997-151c7d4dd8b5
f60735aa-8fc5-4263-9e87-68fa78131ba6
None
Preview
Name / File License Actions
psc2010paper psc2010paper (171).pdf (67 Kb)
Back
0
0
views
downloads
See details
Views Downloads

Versions

Ver.1 2020-09-01 09:59:05.349978
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Export

OAI-PMH
  • OAI-PMH DublinCore
Other Formats
  • JSON

Confirm


Back to MERAL


Back to MERAL