MERAL Myanmar Education Research and Learning Portal
Item
{"_buckets": {"deposit": "f60735aa-8fc5-4263-9e87-68fa78131ba6"}, "_deposit": {"id": "3346", "owners": [], "pid": {"revision_id": 0, "type": "recid", "value": "3346"}, "status": "published"}, "_oai": {"id": "oai:meral.edu.mm:recid/3346", "sets": ["user-ucsy"]}, "communities": ["ucsy"], "item_1583103067471": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Musical Genre Classification using Gaussian Mixture Models", "subitem_1551255648112": "en"}]}, "item_1583103085720": {"attribute_name": "Description", "attribute_value_mlt": [{"interim": "Digital music is one of the most importantdata types, distributed by the Internet. Automaticmusical genre classification is very useful formusic indexing and retrieval. A method torecognize the genre of music audio is considered.In this paper, the input music is represented withDWT (Discrete Wavelet Transform) coefficientsand classifying the extracted features is performedusing Gaussian Mixture Models (GMM). UsingGMM the optimal class boundaries between fourgroups of genre namely, pop, classic, rock and jazzare obtained. The feature vector from featureextraction step uses wavelet coefficients byhierarchical decomposition as it is easy toimplement as well as it can reduce the computationtime and resources required. Given that GMM is arobust approach that could obtain very goodperformance and a solution based on it ispowerful, the classification is mainly composed ofGMM classifiers. The experimental results indicatethat the proposed approach offer encouragingresults."}]}, "item_1583103108160": {"attribute_name": "Keywords", "attribute_value": []}, "item_1583103120197": {"attribute_name": "Files", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2019-07-22"}], "displaytype": "preview", "download_preview_message": "", "file_order": 0, "filename": "psc2010paper (171).pdf", "filesize": [{"value": "67 Kb"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 67000.0, "url": {"url": "https://meral.edu.mm/record/3346/files/psc2010paper (171).pdf"}, "version_id": "bd57f92a-06f9-4c8d-997c-084d03057a01"}]}, "item_1583103131163": {"attribute_name": "Journal articles", "attribute_value_mlt": [{"subitem_issue": "", "subitem_journal_title": "Fifth Local Conference on Parallel and Soft Computing", "subitem_pages": "", "subitem_volume": ""}]}, "item_1583103147082": {"attribute_name": "Conference papers", "attribute_value_mlt": [{"subitem_acronym": "", "subitem_c_date": "", "subitem_conference_title": "", "subitem_part": "", "subitem_place": "", "subitem_session": "", "subitem_website": ""}]}, "item_1583103211336": {"attribute_name": "Books/reports/chapters", "attribute_value_mlt": [{"subitem_book_title": "", "subitem_isbn": "", "subitem_pages": "", "subitem_place": "", "subitem_publisher": ""}]}, "item_1583103233624": {"attribute_name": "Thesis/dissertations", "attribute_value_mlt": [{"subitem_awarding_university": "", "subitem_supervisor(s)": [{"subitem_supervisor": ""}]}]}, "item_1583105942107": {"attribute_name": "Authors", "attribute_value_mlt": [{"subitem_authors": [{"subitem_authors_fullname": "Oo, Su Myat Mon"}, {"subitem_authors_fullname": "Aye, Khin San"}]}]}, "item_1583108359239": {"attribute_name": "Upload type", "attribute_value_mlt": [{"interim": "Publication"}]}, "item_1583108428133": {"attribute_name": "Publication type", "attribute_value_mlt": [{"interim": "Article"}]}, "item_1583159729339": {"attribute_name": "Publication date", "attribute_value": "2010-12-16"}, "item_1583159847033": {"attribute_name": "Identifier", "attribute_value": "http://onlineresource.ucsy.edu.mm/handle/123456789/1106"}, "item_title": "Musical Genre Classification using Gaussian Mixture Models", "item_type_id": "21", "owner": "1", "path": ["1597824273898"], "permalink_uri": "http://hdl.handle.net/20.500.12678/0000003346", "pubdate": {"attribute_name": "Deposited date", "attribute_value": "2019-07-22"}, "publish_date": "2019-07-22", "publish_status": "0", "recid": "3346", "relation": {}, "relation_version_is_last": true, "title": ["Musical Genre Classification using Gaussian Mixture Models"], "weko_shared_id": -1}
Musical Genre Classification using Gaussian Mixture Models
http://hdl.handle.net/20.500.12678/0000003346
http://hdl.handle.net/20.500.12678/0000003346a64786e9-069f-413e-a997-151c7d4dd8b5
f60735aa-8fc5-4263-9e87-68fa78131ba6
Name / File | License | Actions |
---|---|---|
psc2010paper (171).pdf (67 Kb)
|
|